Etiketter

onsdag 23 november 2016

ACE1 avainentsyymi RAAS-järjestelmässä ( Kr. 17q23.3)

https://www.ncbi.nlm.nih.gov/gene/1636

ACE angiotensin I converting enzyme [ Homo sapiens (human) ]
Gene ID: 1636, updated on 13-Nov-2016
17q23.3.  
Official Full Name
angiotensin I converting enzymeprovided by HGNC
Gene type
protein coding
Organism
Homo sapiens
Also known as
DCP; ACE1; DCP1; CD143
Summary
This gene encodes an enzyme involved in catalyzing the conversion of angiotensin I into a physiologically active peptide angiotensin II. Angiotensin II is a potent vasopressor and aldosterone-stimulating peptide that controls blood pressure and fluid-electrolyte balance. This enzyme plays a key role in the renin-angiotensin system. Many studies have associated the presence or absence of a 287 bp Alu repeat element in this gene with the levels of circulating enzyme or cardiovascular pathophysiologies. Multiple alternatively spliced transcript variants encoding different isoforms have been identified, and two most abundant spliced variants encode the somatic form and the testicular form, respectively, that are equally active. [provided by RefSeq, May 2010]

PROTEIN_ Tämä teksti antaa  taustaa  seuraavien ACEI
lääkkeiden käytölle: captopril, enalapril, lisinopril.
 https://www.ncbi.nlm.nih.gov/protein/P12821.1

Pre-angiotensinogen Geeni AGT, sijainti :kromosomi 1q42.2.

 Angiotensinogen AGT kromosomi 1q42.2.

Official Symbol
AGTprovided by HGNC
Official Full Name
angiotensinogenprovided by HGNC
Primary source
HGNC:HGNC:333
See related
Ensembl:ENSG00000135744 HPRD:00106; MIM:106150; Vega:OTTHUMG00000037757
Gene type
protein coding
RefSeq status
REVIEWED
Organism
Homo sapiens
Lineage
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo
Also known as
ANHU; SERPINA8
Summary
The protein encoded by this gene, pre-angiotensinogen or angiotensinogen precursor, is expressed in the liver and is cleaved by the enzyme renin in response to lowered blood pressure. The resulting product, angiotensin I, is then cleaved by angiotensin converting enzyme (ACE) to generate the physiologically active enzyme angiotensin II. The protein is involved in maintaining blood pressure and in the pathogenesis of essential hypertension and preeclampsia. Mutations in this gene are associated with susceptibility to essential hypertension, and can cause renal tubular dysgenesis, a severe disorder of renal tubular development. Defects in this gene have also been associated with non-familial structural atrial fibrillation, and inflammatory bowel disease. [provided by RefSeq, Jul 2008]

Related articles in PubMed

GeneRIFs: Gene References Into FunctionsWhat's a GeneRIF?

Items 1 - 25 of 27
 

ACE2 on sama kuin ADAM17

LÄHDE
https://www.ncbi.nlm.nih.gov/pubmed/27803674
Front Physiol. 2016 Oct 18;7:469. eCollection 2016.
ADAM17 
A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems.

Suomennosta: 

ADAM17 (eli "ACE2" RAAS kartalla)  on metalloproteaasi ja disintegriini, jota on plasmakalvolla useissa solutyypeissä ja se pilkkoo monenlaista pintaproteiinia. Eräänlainen  kadunlakaisija-ammattilainen. Sitä esiintyy imettäväiskehossa somaattisena ja sen proteolyyttinen aktiivisuus vaikuttaa moniin fysiologisiin ja patologisiin prosesseihin. Tässä artikkelissa kohdistutaan ADAM17-rakenteeseen, sen signalointiin kardiovaskulaarisessa systeemissä ja sen osallistumiseen eräisiin sydämen ja verisuonten häriöihin ja autonomisen ja kardiovaskulaarisen  neuronaalisen säätelyn moduloimiseen.
  • ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.

KEYWORDS: ACE2; EGFR; TACE; TNFα; atherosclerosis; hypertension; shedding

  • PMID:27803674 PMCID: PMC5067531 DOI: 10.3389/fphys.2016.00469
  • [PubMed - in process]
  • Angiotensiinin pilkkoutumisen entsymaattiset tiet

    http://hyper.ahajournals.org/content/hypertensionaha/61/3/690/F7.large.jpg
     Proposed network model showing all angiotensin (Ang) peptides down
    to length 5 including bioactive peptides (red),
    undetected peptides (yellow),
     and all other peptides (blue).
     Edges in black were supported in the literature and summarized in Velez.2 Edges in red were predicted in the first phase of our effort and confirmed by experiments reported here. Edges in blue were predicted in the revised model and found to significantly improve model fit (based on deviance information criterion [DIC]) in the dynamic systems model.
    The histogram of the incoming peptide profile (left) is based on measured reported plasma values of Ang peptides.
     The response profile is included for illustration purposes only.
    ACEi indicates Ang-converting enzyme inhibitor;
    APA, aminopeptidase A;
    DP?, an unidentified dipeptidyl aminopeptidase;
     and NEPi, neprilysin inhibitor.
    http://hyper.ahajournals.org/content/hypertensionaha/61/3/690/F7.large.jpg

    Neprilysiini pilkkoo ( 2-10) angiotensiinin muotoon  (2-7) angiotensiini. Myös konversiota (5-10)-angiotensiini muotoon (2-10) angiotensiinistä  esiintyi neprilysiinillä, jos ei ollut inhibiittoria, mutta (5-10) angiotensiinin muodostuminen oli merkitsevästi vähempää. . Neprilysiini johtaa tuotteisiin, josta ei9 tule aktiiveja angiotensiinejä  I,II,III tai IV

    Confirmation of Ang(2–10) to Ang(2–7) Conversion by NEP

    To confirm the proposed conversion of Ang(2–10) to Ang(2–7), additional experiments were performed. Ang(2–10) was exposed to human recombinant NEP untreated or after pretreatment with 1 μmol/L SCH39370 (NEP inhibitor) or 70 nmol/L thiorphan (NEP inhibitor) for 15 minutes and subjected to MALDI MS (Figure 3). For the conditions where inhibitor was omitted, the Ang(2–7) peak was 2.9±0.16-fold that of the Ang(2–10) area, at 15 minutes. Under SCH39370 treatment, none of the spectra contained Ang(2–7) peaks with R2 above our quality threshold indicating nearly complete inhibition (0.009±0.002-fold, relative to Ang(2–10) peak area). Treatment with thiorphan yielded a similar result with a relative Ang(2–7) peak area of 0.037±0.007. Together, these findings support NEP as the enzyme responsible for Ang(2–10) conversion to Ang(2–7). Of note, the conversion of Ang(2–10) to Ang(5–10) via NEP was also evident when inhibitor was omitted, but the magnitude of the Ang(5–10) peak area was significantly smaller. These data support the possibility of a direct Ang(2–10) to Ang(5–10) conversion by NEP, in addition to the Ang(2–10) to Ang(2–7) conversion. 
    We performed additional experiments adding the substrate Ang(2–10) with or without amastatin (100 μmol/L) or SCH39370 (10 μmol/L) pretreatment. Samples were collected immediately after the addition of substrate and hours postaddition. The peptides Ang(2–10), Ang(2–7), and Ang(3–10) were quantified using AQUA peptides, and Ang(4–10) and Ang(5–10) were normalized to the sum of the included AQUA peptide signals (Figure 4). These experiments indicated a significant decrease in Ang(2–7) production after pretreatment with SCH39370, thus providing additional evidence of the NEP-catalyzed Ang(2–10) to Ang(2–7) conversion. We additionally note that a significant decrease in net Ang(3–10) conversion after treatment with amastatin is accompanied by a significant increase (at 4 hours) in Ang(2–7). Also, Ang(2–10) levels at 2 and 4 hours in the presence of amastatin were significantly higher than control. Because amastatin can inhibit both AP A and AP N,4850 this observation suggests that AP A/ AP N inhibition blocks the conversion of Ang(2–10) to Ang(3–10), providing additional substrate for conversion to Ang(2–7). Collectively, these data confirm NEP conversion of Ang(2–10) to Ang(2–7) in mouse podocytes.

    lördag 19 november 2016

    Metalloproteinaasit .Keuhkonsiirto ja bronchiolitis obliterans (Petrea Ericson:Väitöskirja)

    Löysin eilen kirjaston hyllyltä esitteen  seuraavasta väitöstyöstä, jonka väitöstilaisuus oli ollut juuri aamulla Sahlgrenskan puolella.  Näissä on myös  MMP-lajeja otettu merkitsijöitten joukkoon, joten  otan tässä blogissa asian esiin.

    Petrea  Ericson. Potential biomarkers for acute and chronic rejection after lung transplantation.
    http://hdl.handle.net/2077/44856
    Osatyöt väitöskirjasasa ovat seuraavat:

     I. Ericson P, Lindén A, Riise GC. BAL levels of interleukin-18 do not change before or during acute rejection in lung transplant recipients Respir Med 2004; 98 (2):159-63.
    VISA ARTIKEL


    II. Riise GC, Ericson P, Bozinovski S, Yoshihara S, Anderson GP, Lindén A Increased net gelatinase but not serine protease activity in bronchiolitis obliterans syndrome J Heart Lung Transplant 2010; 29 (7):800-7.
    VISA ARTIKEL


    III. Ericson P, Tengvall S, Stockfelt M, Levänen B, Lindén A, Riise GC. Involvement of IL-26 in bronchiolitis obliterans syndrome but not in acute rejection among lung transplant recipients Submitted

    IV. Ericson P, Mirgorodskaya E, Hammar O, Viklund E, Almstrand AC, Larsson P, Riise GC, Olin A-C. Low levels of exhaled surfactant protein A associated with BOS after lung transplantation Transplantation Direct 2016;2: e103.
    VISA ARTIKEL


    Näistä artikkeleista otan sitaatin osatyöstä II, joka käsittelee MMP- molekyylejä-metalloproteinaaseja (MMP) ja mainitaan myös seriiniproteaasi neutrofiilielastaasi (NE) ja neutrofiilin proteaasiinhibiittori  (SLPI) 

    Suomensosta

    TAUSTA . Bronchiolitis obliterans-oireyhtymä (BOS)  on pääasiallisin pitkäaikaiskomplikaatio keuhkon siirron jälkeen.  Aiemmista tutkimuksista näkee neutrofiilien mobilisaation  aiheuttamat korkeat proteaasien pitoisuudet  keuhkosiirteessä obliteroivan bronkiitin oireyhtymässä(BOS).  Tässä työssä  määritellään  proteaasien verkostollista vaikutusta ja niiden funktionaalisia näkökohtia siirretyn keuhkon  obliteroivan bronkiitin oireyhtymässä (BOS).
    • Background. Bronchiolitis obliterans syndrome (BOS) is the main long-term complication after lung transplantation. Previous studies indicate that neutrophil mobilization causes high protease concentrations in the lung allograft during BOS. This study assessed net protease activity and the functional aspect of proteases in BOS.
     Menetelmä.  Gelatinaasien ja  seriiniproteaasien  aktiviteettien  verkostolliset vaikutukset  mitattiin bronkoalveolaarisesta huuhtelunesteestä  (BAL) 24 keuhkosiirrännäisparista  valittiin 12 paria- sekä niistä joissa oli obliteroivan bronkioliitin oireyhtymää 8BOS)  ja niistä,  joissa sitä ei ollut.  Valittiin suuresta kliinisestä materiaalista  matchaavat parit . Tutkijat määrittivät gelatinaasien kokonaisaktiivisuuden ja MMP-2 ja MMP-9metalloporteaasipitoisuudet ja myös seriiniproteaasit kuten neutrofiilin elastaasin (NE)  ja erään   antiproteaasin, sekretorisen leukosyyttiproteaasi-estäjän (SLPI)
    • Methods   The net gelatinase and net serine protease activity was assessed in bronchoalveolar lavage (BAL) fluid from 12 pairs of 24 lung allograft recipients with and without BOS, carefully selected from a larger cohort that was otherwise clinically matched. We determined the identity and total activity of gelatinases and concentrations of matrix metalloproteinases (MMP) 2 and 9, as well as the concentration of serine protease, neutrophil elastase (NE), and one major antiprotease, secretory leukocyte protease inhibitor (SLPI).
    Gelatinaasiaktiivisuus (MMP) kaiken kaikkiaan oli lisääntynyt obliteroivan bronkiitin oireyhtymässä (BOS) ja kokonais- MMP-9-aktiivisuus ylitti kokonais MMP-2- aktiivisuuden. Keskimääräinen totaali MMP-9 -pitoisuus oli korkeampi obliteroivan bronkioliitin oireyhtymässä (BOS)  kuin  niissä keuhkonäytteissä, joissa ei ilmennyt BOS. .  Mutta  MMP-2ö- pitoisuudessa ei ollut  eroja.  On huomioitava, että  gelatinaasiaktiivisuus korreloi MMP-9 -proteinaasiin ja neutrofiilien prosentuaalisuuteen.  Huolimatta neutrofiilin elastaasin ( seriiniproteaasityypin)  lisääntymisestä ja muuttumattomasta  antiproteaasin  SLPI-pitoisuudesta  pysyttelivät seriiniproteaasipitoisuudet  muuttumattomina viitaten siihen, että  neutrofiilin elastaasin verkkovaikutus  ei osallistu obliteroivan bronkioliitin oireyhtymän patologiaan.
    • Results. Net gelatinase activity was substantially increased in BOS (n = 12), with total MMP-9 activity exceeding total MMP-2 activity (p < 0.01). Correspondingly, the total mean (interquartile range) concentration of MMP-9 was increased in BOS (62 [160] ng/ml) vs non-BOS (20 [24] ng/ml; p < 0.05), but not MMP-2 (BOS: 0.6 [0.7]; non-BOS: 0.6 [0.8] ng/ml, p = 0.23). Notably, net gelatinase activity correlated with MMP-9 (ρ = 0.9, p < 0.01) and percentage of neutrophils (ρ = 0.8, p < 0.01). Despite increased levels of NE and unaltered levels of SLPI, net serine protease levels remained unaltered, suggesting that NE does not contribute to BOS pathology.
     Yhteenveto. Tässä tutkimuksessa  on viitettä siitä, että tapahtuu  vastavaikuttamaton nousu gelatinaasiaktiivisuudessa, kun siirteessä oli  obliteroivaa bronkioliittioireyhtymää  ja osaksi  sen voi laskea paikallisista  neutrofiileistä tulevan  MMP-9:n metalloproteinaasin  tiliin. Vastaavaa näyttöä ei havaittu seriiniproteaasiaktiivisuudesta (kuten neutrofiilielastaasista)
    • Conclusions. Our study supports that there is an unopposed increase in gelatinase activity in BOS, which in part is likely to be accounted for by MMP-9 from local neutrophils. No corresponding evidence was found for serine protease activity.
    Muistiin 19.11. 2016



    Metalloproteinaasit ja keuhkon siirto. Keuhkon siirto ja brlonchilitis obliterans

    Ensinnäkin katson 20 ensimmäistä artikkelia Pubmed hakulaitteella aiheesta Lung transplantation, Bronchiolitis obliterans.
    Search results
    Items: 1 to 20 of 1155
    • 1.
    Kuehnel M, Maegel L, Vogel-Claussen J, Robertus JL, Jonigk D.
    Cell Tissue Res. 2016 Nov 12. [Epub ahead of print] Review.
    • 2.
    • 3.
    Ericson PA, Mirgorodskaya E, Hammar OS, Viklund EA, Almstrand AR, Larsson PJ, Riise GC, Olin AC.
    Transplant Direct. 2016 Aug 26;2(9):e103.
    • 4.
    Suhling H, Dettmer S, Greer M, Fuehner T, Avsar M, Haverich A, Welte T, Gottlieb J.
    Am J Transplant. 2016 Nov;16(11):3163-3170. doi: 10.1111/ajt.13876.
    • 5.
    Strueber M, Warnecke G, Fuge J, Simon AR, Zhang R, Welte T, Haverich A, Gottlieb J.
    Am J Transplant. 2016 Nov;16(11):3171-3180. doi: 10.1111/ajt.13835.
    • 6.
    Yamada Y, Vandermeulen E, Heigl T, Somers J, Vaneylen A, Verleden SE, Bellon H, De Vleeschauwer S, Verbeken EK, Van Raemdonck DE, Vos R, Verleden GM, Jungraithmayr W, Vanaudenaerde BM.
    Transpl Immunol. 2016 Nov;39:10-17. doi: 10.1016/j.trim.2016.10.001.
    • 7.
    Guihaire J, Itagaki R, Stubbendorff M, Hua X, Deuse T, Ullrich S, Fadel E, Dorfmüller P, Robbins RC, Reichenspurner H, Schumacher U, Schrepfer S.
    Transpl Int. 2016 Sep 10. doi: 10.1111/tri.12854. [Epub ahead of print]
    • 8.
    Vandermeulen E, Verleden SE, Bellon H, Ruttens D, Lammertyn E, Claes S, Vandooren J, Ugarte-Berzal E, Schols D, Emonds MP, Van Raemdonck DE, Opdenakker G, Verleden GM, Vos R, Vanaudenaerde BM.
    Transpl Immunol. 2016 Sep;38:27-32. doi: 10.1016/j.trim.2016.08.004.
    • 9.
    Jung HS, Lee JG, Yu WS, Lee CY, Haam SJ, Paik HC.
    Interact Cardiovasc Thorac Surg. 2016 Aug 1. pii: ivw231. [Epub ahead of print]
    • 10.
    Doellinger F, Weinheimer O, Zwiener I, Mayer E, Buhl R, Fahlenkamp UL, Dueber C, Achenbach T.
    Eur J Radiol. 2016 Aug;85(8):1414-20. doi: 10.1016/j.ejrad.2016.05.018.
    • 11.
    Borro JM, Delgado M, Coll E, Pita S.
    World J Transplant. 2016 Jun 24;6(2):347-55. doi: 10.5500/wjt.v6.i2.347.
    • 12.
    Gracon AS, Liang TW, Rothhaar K, Wu J, Wilkes DS.
    J Surg Res. 2016 Jun 1;203(1):82-90. doi: 10.1016/j.jss.2016.03.041.
    • 13.
    Gunasekaran M, Xu Z, Nayak DK, Sharma M, Hachem R, Walia R, Bremner RM, Smith MA, Mohanakumar T.
    Am J Transplant. 2016 Jun 9. doi: 10.1111/ajt.13915. [Epub ahead of print]
    • 14.
    Verleden SE, Sacreas A, Vos R, Vanaudenaerde BM, Verleden GM.
    Chest. 2016 Jul;150(1):219-25. doi: 10.1016/j.chest.2016.04.014.
    • 15.
    Ladak SS, Ward C, Ali S.
    J Heart Lung Transplant. 2016 May;35(5):550-9. doi: 10.1016/j.healun.2016.03.018.
    • 16.
    Traxler D, Schweiger T, Schwarz S, Schuster MM, Jaksch P, Lang G, Birner P, Klepetko W, Ankersmit HJ, Hoetzenecker K.
    Transplantation. 2016 May 10. [Epub ahead of print]
    • 17.
    DerHovanessian A, Todd JL, Zhang A, Li N, Mayalall A, Finlen Copeland CA, Shino M, Pavlisko EN, Wallace WD, Gregson A, Ross DJ, Saggar R, Lynch JP 3rd, Belperio J, Snyder LD, Palmer SM, Weigt SS.
    Ann Am Thorac Soc. 2016 May;13(5):627-35. doi: 10.1513/AnnalsATS.201510-719OC.
    • 18.
    Miele CH, Schwab K, Saggar R, Duffy E, Elashoff D, Tseng CH, Weigt S, Charan D, Abtin F, Johannes J, Derhovanessian A, Conklin J, Ghassemi K, Khanna D, Siddiqui O, Ardehali A, Hunter C, Kwon M, Biniwale R, Lo M, Volkmann E, Torres Barba D, Belperio JA, Sayah D, Mahrer T, Furst DE, Kafaja S, Clements P, Shino M, Gregson A, Kubak B, Lynch JP 3rd, Ross D, Saggar R.
    Ann Am Thorac Soc. 2016 Jun;13(6):793-802. doi: 10.1513/AnnalsATS.201512-806OC.
    • 19.
    Nayak DK, Zhou F, Xu M, Huang J, Tsuji M, Hachem R, Mohanakumar T.
    Am J Transplant. 2016 Aug;16(8):2300-11. doi: 10.1111/ajt.13819.
    • 20.
    Ceulemans LJ, Strypstein S, Neyrinck A, Verleden S, Ruttens D, Monbaliu D, De Leyn P, Vanhaecke J, Meyns B, Nevens F, Verleden G, Van Raemdonck D, Pirenne J.
    Transpl Int. 2016 Jun;29(6):715-26. doi: 10.1111/tri.12781.

    fredag 18 november 2016