https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810947/
Epilysin (MMP-28) was first cloned from the human keratinocyte and
testis cDNA libraries, and is expressed in many tissues such as lung,
placenta, heart, gastrointestinal tract and testis (Lohi et al., 2001). The enzyme expressed in basal keratinocytes in skin is considered to function in wound repair (Saarialho-Kere et al., 2002). It is also elevated in cartilage from patients with osteoarthritis and rheumatoid arthritis (Kevorkian et al., 2004; Momohara et al., 2004).
Overexpression of recombinant MMP-28 in lung adenocarcinoma cells
induces irreversible epithelial mesenchymal transition, accompanied by
cell surface loss of E-cadherin, processing of latent TGFβ complex and
increased levels of TGFβ, along with up-regulation of MT1-MMP and MMP-9
and collagen invasive activity (Illman et al., 2006).
Etiketter
- -10
- -11)
- . sAPP:n normaali pilkkoja
- (Aortta9 aneurysma .
- <osteonektiini
- 2
- 3. (MMP-3
- 4 artikkelia
- 4 blade propel
- 4lehti-propellineni
- A Disintegrin And Metalloproteases
- Abeeta
- ABl2
- ACE1
- ACEI
- AD
- ADA10 geeniuutiset
- ADAM
- ADAM- molekyyleistä
- ADAM-15
- ADAM-17
- ADAM-17 inhibiittori
- ADAM-31
- ADAM-33
- ADAM-proteiiniperhe
- ADAM10
- ADAM10 alfasekretaasi
- ADAM10 ja ADAM17 degradomi
- ADAM17
- ADAM17 (2p.25.1)
- ADAM17 (ACE2 eli TACE)
- ADAM17 (TACE)
- ADAM17 inhibiittorikehittely
- ADAM17 sheddaasi
- ADAM17 substraatteja yli 80
- ADAM18
- ADAM19
- ADAM20
- ADAM22
- ADAM27
- ADAM28
- ADAM30
- ADAM33
- ADAM9
- ADAMs
- ADAMTS
- ADAMTS & SVMPs
- ADAMTS- proteinaasit ja 4 alaryhmää
- ADAMTS-13 ja sen vasta-aineet diagnostiikassa
- ADAMTS1
- ADAMTS13
- ADAMTS13 entsyymin puute
- ADAMTS15
- ADAMTS9 (Diabetes mellitus T2DM)
- Aggrekanaasi ja artriitti
- AGTR1 ( angiotensiinin II:n pääreseptori)
- AGTR2
- Aivokammio
- Aivotutkimusken edistyksistä
- Aktiivi D-vitamiini
- alendronate
- alfa-2M.
- alfa2-makroglobuliini
- alfasekretaasi
- ALL
- Amiloridi
- AML
- Angiogeneesin säätely
- angiostatiinin kaltaiset proteiinit
- Angiotensiini II
- Angiotensiini II ja maksavaurio
- Angiotensiini-II
- Angiotensiinin pilkkoutuminen
- Angiotensiinireseptori AT2
- anti-angiogeneettinen vaikutus
- antiangiogeeni
- antiangiogeeninen
- antioksidatiivinen polymeerikapselitekniikka
- antiparasiittinen
- Antisheddaasistrategian lääkekehittelyn vaihe 2016
- Aortta aneurysma . Suomennos.
- Aortta-aneurysma
- APOBEC3G
- Apoptoosiresistenssi
- APP
- APP prosessointi
- Aprotiniini
- astasiiniperhe
- astmamuutokset
- Autofagosomibiogeneesi 2013
- Autoimmuuni myokardiitti
- avainentsyymi RAASjärjestelmässä
- avainlinkki luonnollisen ja adaptiivisen immuniteetin välillä
- Aviojen valkea aines
- Bakteeriproteinaasit ja ihmisen MMP
- BDKRB1.
- BDKRB2
- betakaroteeni
- BM-40
- Bradykiniinireseptori B1
- Bradykiniinireseptori B2
- BRC5 geeniperhe
- BSG
- C3-C5
- Ca mammae c. metast.
- CALLA
- CAM
- CD10
- CD135
- CD147
- CD156B
- CD44
- Cecropin
- Celecoxib( COX-2 estäjä)
- CF
- cGAS-c-GAMP-STING signaalitie
- CMT2T
- COPD
- COPD (KOL)
- COPD(KOL)
- cornean toistuva erosio
- COVID-19 ja ADAMTS13 interaktiosta
- Covid-19 taudin vakavuusasteet ja ADAMTS-13 aktiviteetin alenema
- CPEB1(15q25.2)
- CRC
- Crosslinking
- CSVP
- Cu-metalloproteiinit
- Cys array domain
- Deathstalker
- dementiadiagnostiikka
- Dendriittisolujen kehitys
- Dendroaspis angusticeps
- dendroaspis polylepsis
- Dengue
- Dengue ja MMP-inhibiittori
- Diabetes
- Diabetes Egyptin tavallisin tauti. Kansanlääkkevaikutuksesta
- Disintegriini
- disintegriini ja MMP
- disintegriinin ja MMP
- DLG4
- Doxysykliinin MMPi vaikutus
- dsDNA sensori
- Dynaaminen luu ja MMP
- E-vitamiini
- ebola
- Ebola gp vaimennussäätää tärkeitä pintamolekyylejä
- Ebolan strategia; kysteiiniproteaasi-inhibiittori
- EBOV
- EBOV shed GP
- EBOV GP
- EC
- EC 3.4.24.-
- ECM
- ECM and Ebola
- ECM ja MMP proteiinit verkostona
- ECM kypsyminen
- Efriini-A3
- Efriini-A5
- EIPA
- ELA2 (19p13.3)
- elastaasi
- Elastaasi ja aortta-aneurysma
- Ellen Hanssonin väitöskirja sta
- Ellen Hanssonin väitöskirjasta
- Emfyseema
- EMMPRin
- EMT
- EMT-TF
- endometrioosi
- endoteelisolu
- Enterosyytti. Suolistohaavan paraneminen
- ER ja MMP-1
- ERK1/2
- erythroid promoting activity
- esim serralysiinit
- Euroopan tavalliset kyyt ja niiden puremat (2021)
- extrasellulaarinen matrix
- extrasellulaaristen MMPs indusoija
- FAP
- Fav-Afrique
- Fibrinolyysi
- Fibronektiini
- FIH ja Mint3 ja MT1-MMP rekrytoituvat legionellaa sisältäviin vakuoleihin (LCV)
- Flt
- Flt-3 L
- Flt3
- Flt3 estäjä
- Flt3 geeni
- Flt3L MMP
- Fluorokinoloneista
- FN
- Furiini
- FURIINI ja EBOV GP-prosessointi
- Fytiini
- G12perheen proteiinit
- Geeni CD151
- Geeni CD44
- Geeni FUR 15q26.1
- geenin sijainti
- gelatinaasi
- Gelatinaasi-inhibiittori thiirane
- H2O2
- Halofuginoni
- hematopoieettisen solun säätely
- Hemopexiinitoistot
- Hemopxeiinin kaltainen superperhe
- Hepatoma
- HIF1
- HMP
- HNE
- Hoitamaton Keliakia
- Horst Ibelgaufts 1995
- Huggormsbett
- human collagenase inhibitor
- hyaluronaanireseptori
- Hypertensio
- Hypoksian indusoima tekijä 1
- IBD
- Influenssavirusenkefalopatia
- Integriinit
- Invasiivisuus
- IPF
- IRF5
- ISBT 023 Indian veriryhmä
- ISBT 024
- ISBT 025
- isäntäsolun katepsiini B
- iTTP ja hTTP.
- K2 vitamiini
- kallikreiini-kiniinisysteemi ( MMP-3 aktivaatio)
- Kallikreiinigeenit ja reseptorit
- katepsiini L
- katepsiini-B
- katepsiini-inhibiittori
- Katepsiinit
- Keltainen skorpioni
- Keramidisyntaasi
- Kertausta MMP asiasta
- keuhkoahtauma
- keuhkofibroosi
- Keuhkokarsinooma
- Keuhkonsiirto ja bronchiolitis obliterans ja MMP-9 Neutrofiilielastaasi
- Keuhkonsiirto ja bronchiolitis obliterans 20 artikkelia
- Keuhkosyöpä
- keuhkosyöpä ja CPEB4
- keuhkovaurio
- Kiniinireseptorit B1 ja B2
- Kiniinirreseptori B2.
- Koagulaatiosysteemi ja plasminerginen systeemi
- kollagenaasi
- Kontrolloimaton ECM proteolyysi
- Kr. 9q34
- Kupari
- Kupari ja rintasyöpä
- Kutaani syst. skleroosi ja MMP-kaskadi
- Kysteiiniproteaasit ja niiden inhibiittorit
- Kyyn hemorhaginen metalloproteinaasi HMP
- Kyyn myrkyn toiseksi suurin entsyymiryhmä SVTLEs
- Kyyn pureman hoito
- Kyynpurema
- Kyynpuremasta
- käyttöindikaation tarkistusta
- Käärmeen myrkyssä voi olla maan tomusta niitä radioaktiivisiakin ainita
- Käärmeenmyrkky
- Käärmeenmyrkyn hyaluronidaasit SVHYA vertailussa. SVAPs.
- Käärmeenmyrkyn vasta-aineiden tärkeys
- Käärmeenpureman vaaroista (Dödliga ormbett) Käärmeseerumin valmistuksesta
- Käärmeenpuremien yleisyys
- Lapsen kyynpurematapaus
- Lisätietoa matrixmetalloproteinaasesita
- liukoinrn SEMA4D
- LOX entsyymi
- LPS ja sydämen dysfunktio
- Lubricin
- luuytimen seriiniproteaasi
- Lymfoma
- Lysyylioksidaasi
- Lyyn myrkky
- M Erlandssonin väitöskirja nivelreumasta
- M13 perhe
- Major Sheddases ADAM10 ja ADAm17
- Makrofagi
- Makrofagi sekretomi
- Makrofagielastaasi
- Maksakirroosin parantaminen
- maksametastaasi
- maligniteetti
- mamban myrkystä
- Mamban puremasta Dendroapsis
- Marimastat
- Matriksin metalloproteinaasi MMP-8 ja kudosvälitilan proteaasi-inhibiittori TIMP-1
- Matrilysiinidomeeni
- matrixmetalloproteinaasien kudosestäjiä
- MDC-perhe
- MDM2
- medullasiini
- Mepriinit
- Meprin beta
- MEROPS database
- mestastaasi
- metargidin
- metastasoituminen
- METH1
- metsinkiini superperhe
- Metzincin superfamily
- METZINCIN superperhe
- Metzinkiiniperheen alajakoa
- Metzinkiinisuperperhe
- Metzinkiinit ja seitsemän alaryhmää
- Michael Jonssinin väitöskirja
- Michael Jonssonin väitöskirja
- miR-29
- Miten legionella nitistää Syntaxiini17 proteiinin ja samalla kumoaa fagolysosomitietä
- MME(3q25.2) Beprilysiini
- MMP
- MMP AND autophagosome
- MMP inhibiittoreita 20 000 uutta
- MMP interaktio
- MMP ja demyelinisoiva tauti
- MMP ja Lymen neuroborrelioosi
- MMP ja TIMP perheet genomissa
- MMP kaskadi
- MMP kirjosta
- MMP luettelo ja substaatit
- MMP osuus Abeeta4 biogeneesissä.
- MMP ovat sinkistä riippuvia endopeptidaaseja
- MMP perheen biologinen rooli ja kriittinen tasapaino
- MMP rakennekuva
- MMP rooli gliomassa. Onko vastavaikuttajia?
- MMP- kaskadi iskemisessä halvauksessa
- MMP-1
- MMP-11 ja rintasyöpä
- MMP-12
- MMP-12 inhibittori
- MMP-12( gelatinaasi A)
- MMP-13 (Kr.11q22.2)
- MMP-15
- MMP-15 (MT-MMP-2)
- MMP-19
- MMP-2
- MMP-2 (Gelatinaasi-A)- inhibiittoreista
- MMP-2 estäjä
- MMP-2. MMP-9
- MMP-28
- MMP-28 (17q21.1) epilysiini
- MMP-3
- MMP-3 ja ADAMTS-5
- MMP-3 ja osteoartriitti
- MMP-3 pilkkoo A2AP:tä
- MMP-7
- MMP-8
- MMP-9
- MMP-9 inhibitio
- MMP-9 suppressio
- MMP-9 inhibiittori minosykliinihydrokloridi
- MMP-9 inhibitio
- MMP-9 ja melatoniini
- MMP-ja MT-MMP-substraateista ja inhibiittoreista
- MMP-järjestelmä keuhkofibroosissa
- MMP-kirjo ja Ca Mammae riski
- MMP-perhe
- MMP1 (11q22.3)
- MMP2
- MMP8-fuusioproteiini
- MMP9
- MMPI
- MMPs
- MMPs in Ca mammae
- MMPs Lymen neuroborrelioosissa
- MMPs reseptori CD44
- Monosyytti
- Monosyytti ja MMP
- Morbilli ja MMP
- MT-MMP
- MT.MMP
- MT1-MMP
- MT1-MMP substraatti
- MT1-MMP kirjot primäärisyövässä ja niiten ihometastaasissa
- MTs
- MUC-1
- Musiini 1 MUC1
- N-cadheriini
- Navigate
- NCAM
- NEP
- Neuroligiini-1
- Neutrofiilielastaas
- neutrofiilielastaasi
- NHE-I
- Nikamavälilevydegeneraatiomalli
- Nikotiini. LPS
- NISBD
- NISBD1
- nivelneste
- Nivelreuma
- Nivelreuman tapahtumat nivelrustossa ja luussa . Mats Dehlinin väitöskirja
- nivelruston sorvaus
- normaali sAPP
- NOTCH
- Notcsignaloinnin estäjä
- NSCLC
- olmesartan
- Onkolyyttinen tuhkarokkovirus
- organisaatio
- osteoblasti
- Osteonektiini
- Oxdordlista
- p53
- pahanlaatuinen tauti
- PAI-1:ta . uPA:ta
- Periostat
- Perisyytti
- PGE(2=
- Pinttynyt maksakirroosi
- Plasmiini(MMP-3 kaskadi
- Plasmin
- Plasminogeeni
- Plasminogeeni-plasmiini ja syöpä
- Plasminogeeni-plasmiini- peräinen ANGIOSTATIINI
- Pohdittavaksi glu-css antiporter glioomassa
- Pravastatiinin
- PRCGVPDS-gluthatiolation
- Pre-angiotensinogeeni tarvitsee reniinin.
- PRG4 1q25-q31
- PRMT
- pro-MMP7
- prolyl-tRNA syntaasin estäjä
- proproteiinikonvertaasi
- proteaasi-antiproteaasiepätasapaino keuhkofibroosissa
- proteiiniarginiini metyylitransferaasi
- proteoglykaani
- proteomitekniikka
- Proteus ja diabetes.
- Prtoeiini C aPC activate gelatinase A
- Pseudpmpnas
- Punkin syljen merkitys verirqavinnon hankinnassa
- Punkkien syljen metalloproteinaasit
- RA
- Reseveratroli ja MMP-13suppressio?
- resveratroli
- Rintasyöpä
- rusto
- S100A4 metastasiini
- Samuel Bagster 1875
- SARA
- SCA43. membraanimetalloendopeptidaasi
- SEMA3C
- SEMA3C semaforiini-3C
- SEMA4D
- Semaforiini
- seriiniproteaasi NE
- Serralysiiniperhe Virulenssiproteiineja
- Serralysiinistä vuonna 1999
- Serralysin 2020
- Sheddase
- signalointitiet
- Sinkkiproteiini
- SIRT-1
- SLPI proteaasi-inhibiittori
- SMAD
- SMURF
- SNIP
- Solu Adheesio Molekyyli
- Sorafenib (VEGFR estäjä)
- Sorvareiden ja Kähyjen Klaani MA
- SPARC
- STAT3
- STAT3signaloinnin inhibitio syöpäterapiassa
- Stimulator of Interferon Genes
- STING
- stromelysiini
- stromelysiini-1
- Stromelysiinit 1
- suhde MMP kaskadiin päin
- sulfatidi
- Sunitinib
- Suomalainen väiotöskirja
- Suomalaisia artikkeleita
- suonituppi
- surviviini
- Surviviini inhibitio
- Surviviini nuclear shuttle protein
- SVD
- SVMP
- Syndekaani-4
- sytokiiniverkosto
- syöpäsolun migroituminen
- T1DM ja MMPs
- TACE
- TACE/ADAM17
- TAFI
- tetraspaniini
- Tetrasykliinijohdannainen kollagenaasi-inhibiittorina
- TGFbeta/SMAD signalointi
- TIMP
- TIMP luettelo ja tehtävät
- TIMP- 1 väitöskirjoissa
- TIMP-1
- TIMP-1 metabolisessa oireyhtymssä
- TIMP-1 ei ole vain MMP-inhibiittori
- TIMP-1 geeni X kromosomissa
- TIMP-1 geeni.
- TIMP-1 ja glioblastooma
- TIMP-2
- TIMP-3
- TIMP-4/CD63 ja gliooma. Astrosyyttinen fenotyyppi
- TIMP1 geeni
- TIMP3 ja SIRTUIINI
- TIMPs
- TNFalfa
- TNFalfa konvertaasi
- TOPA
- tPA
- tPA /plasminogeeni axisd
- Treenaus ja obesitas-aspekti
- Trombomoduliini ja MMP
- TTP
- Tulehdus ja oksidatiivinen strtessi aktivoi proMMP
- Tupakansavu asetyloi TIMP1. SIRT1 deasetyloi TIMP1. TIMP/MMP9 tasapaino
- Tutkimuksia MMP klusterista keuhkofibroosissa (IPF)
- Tutukimustyö
- UC
- uPA
- uPA inhibiittori
- uPAR
- urokinaasi
- UTE-1
- uUusi asenne fluorokinoloneihin 2019
- VaD
- vaiutaa angiostatiinin syntyä
- Valtimoseinämän jäykkyys
- Veriaivoeste
- veriryhmä OK
- Veriryhmä Raph
- Vipera Berus myrkkyjen tutkimus
- vitronektin
- Voiko MMP-kaskadia rauhoittaa
- VWF
- vWF pilkkova proteaasi
- Välilevy
- Wikipedian yleiskatsaus MMPs 2017
- ZapA metalloproteaasi on IgA.ta hajoittava
- ZEB
- Zinkiinit
- ZnMc_MMP
måndag 19 november 2018
Thesis 2018: TIMP3 (SFD) , MMP-28 (epilysiini) . Raamissa COPD ja IPF
J Proteomics. 2018 Oct 30;189:23-33. doi: 10.1016/j.jprot.2018.02.027. Epub 2018 Mar 1.
Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
Åhrman E1, Hallgren O2, Malmström L3, Hedström U4, Malmström A5, Bjermer L2, Zhou XH6, Westergren-Thorsson G7, Malmström J8.
Abstract
Remodeling
of the extracellular matrix (ECM) is a common feature in lung diseases
such as chronic obstructive pulmonary disease (COPD) and idiopathic
pulmonary fibrosis (IPF). Here, we applied a sequential tissue
extraction strategy to describe disease-specific remodeling of human
lung tissue in disease, using end-stages of COPD and IPF. Our strategy
was based on quantitative comparison of the disease proteomes, with
specific focus on the matrisome, using data-independent acquisition and
targeted data analysis (SWATH-MS). Our work provides an in-depth
proteomic characterization of human lung tissue during impaired tissue
remodeling. In addition, we show important quantitative and qualitative
effects of the solubility of matrisome proteins. COPD was characterized
by a disease-specific increase in ECM regulators, metalloproteinase
inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas
for IPF, impairment in cell adhesion proteins, such as collagen VI and
laminins, was most prominent. For both diseases, we identified increased
levels of proteins involved in the regulation of endopeptidase
activity, with several proteins belonging to the serpin family. The
established human lung quantitative proteome inventory and the
construction of a tissue-specific protein assay library provides a
resource for future quantitative proteomic analyses of human lung
tissues. SIGNIFICANCE: We present a sequential tissue extraction
strategy to determine changes in extractability of matrisome proteins in
end-stage COPD and IPF compared to healthy control tissue. Extensive
quantitative analysis of the proteome changes of the disease states
revealed altered solubility of matrisome proteins involved in ECM
regulators and cell-ECM communication. The results highlight
disease-specific remodeling mechanisms associated with COPD and IPF.
KEYWORDS:
COPD; IPF; Lung tissue; Matrisome; Quantitative proteomics; SWATH-MS- PMID:
- 29501846
- DOI:
- 10.1016/j.jprot.2018.02.027
TIMP1/MMP tasapaino ja SIRTUIINI1: Raameissa COPD ja emfyseema
Abstract
Sirtuin1
(SIRT1), a protein/histone deacetylase, protects against the
development of pulmonary emphysema.
However, the molecular mechanisms
underlying this observation remain elusive. The imbalance of tissue
inhibitor of matrix metalloproteinases (TIMPs)/matrix metalloproteinases
(MMPs) plays an important role in the pathogenesis of chronic
obstructive pulmonary disease (COPD)/emphysema.
We hypothesized that
SIRT1 protects against emphysema by redressing the imbalance between
MMPs and TIMPs.
To test this hypothesis, SIRT1 deficient and
overexpressing/transgenic mice were exposed to cigarette smoke (CS). The
protein level and activity of MMP-9 were increased in lungs of SIRT1
deficient mice exposed to CS as compared to WT littermates, which were
attenuated by SIRT1 overexpression. SIRT1 deficiency decreased the level
of TIMP-1, which was augmented in SIRT1 transgenic mice as compared to
WT littermates by CS. However, the level of MMP-2, MMP-12, TIMP-2,
TIMP-3, or TIMP-4 was not altered by SIRT1 in response to CS exposure.
SIRT1 reduction was associated with imbalance of TIMP-1 and MMP-9 in
lungs of smokers and COPD patients.
Mass spectrometry and
immunoprecipitation analyses revealed that TIMP-1 acetylation on
specific lysine residues was increased, whereas its interaction with
SIRT1 and MMP-9 was reduced in mouse lungs with emphysema, as well as in
lungs of smokers and COPD patients. SIRT1 deficiency increased
CS-induced TIMP-1 acetylation, and these effects were attenuated by
SIRT1 overexpression. These results suggest that SIRT1 protects against
COPD/emphysema via redressing the TIMP-1/MMP-9 imbalance involving
TIMP-1 deacetylation. Thus, redressing the TIMP-1/MMP-9 imbalance by
pharmacological activation of SIRT1 is an attractive approach in the
intervention of COPD.
Kertauksena kaikki neljä TIMP ja niiden geenit
Kuvitella, niitä ei ole vieläkään enemmän kuin neljä kuten monta vuotta sitten. Tai sitten niitä ei ole kovin tarkkaan tutkittu. Ne ovat olleet aika huomaamattomia verrattuna MMP-joukon massiivisiin haitta-aikaansaannoksiin.
Niillä voi olla jokin muu oma funktio kuin vain olla MMPi.
https://www.genenames.org/cgi-bin/genefamilies/set/892
Niillä voi olla jokin muu oma funktio kuin vain olla MMPi.
https://www.genenames.org/cgi-bin/genefamilies/set/892
Tissue inhibitor of metalloproteinase: The matrix
metalloproteinases are inhibited by specific endogenous tissue
inhibitors of metalloproteinases (TIMPs), which comprise a family of
four protease inhibitors: TIMP1, TIMP2, TIMP3 and TIMP4.
Overall, all MMPs are inhibited by TIMPs once they are activated but the
gelatinases (MMP-2 and MMP- ) can form complexes with TIMPs when the
enzymes are in the latent form. The complex of latent MMP-2
(pro-MMP-2)with TIMP-2 serves to facilitate the activation of pro-MMP-2
at the cell surface by MT1-MMP ( MMP-14 ), a membrane-anchored MMP. The
role of the pro-MMP-9/TIMP-1 complex is still unknown.
[Source: Wikipedia]
Genes contained within the family: 4
l | TIMP1 | TIMP1 metallopeptidase inhibitor 1 EPO, (Xp11.3) | TIMP2 | TIMP 2metallopeptidase inhibitor 2 CSC-21K (17q25.3) | TIMP3 | TIMP3 metallopeptidase inhibitor 3 SFD (22q12.3) | TIMP4 | TIMP4 metallopeptidase inhibitor 4 |
---|
TIMP-1
Function
Metalloproteinase inhibitor that
functions by forming one to one complexes with target
metalloproteinases, such as collagenases, and irreversibly inactivates
them by binding to their catalytic zinc cofactor. Acts on MMP1, MMP2,
MMP3, MMP7, MMP8, P9, MMP10, MMP11, MMP12,
MMP13 and MMP16. Does not act on MMP14. Also functions as a growth
factor that regulates cell differentiation, migration and cell death and
activates cellular signaling cascades via CD63 and ITGB1. Plays a role
in integrin signaling. Mediates erythropoiesis in vitro; but, unlike
IL3, it is species-specific, stimulating the growth and differentiation
of only human and murine erythroid progenitors.12 Publications
TIMP-2
TIMP-3
A
novel function for tissue inhibitor of metalloproteinases-3 (TIMP3):
inhibition of angiogenesis by blockage of VEGF binding to VEGF
receptor-2.
Qi JH et al. Nat. Med. 2003 Apr;9(4):407-415
PMID: 12652295 Europe PMC Pubmed
TACE, SIRT-1 ,TIMP-3, IBD, resveratroli
https://www.ncbi.nlm.nih.gov/pubmed/24548422
Cytokine. 2014 Mar;66(1):30-9. doi: 10.1016/j.cyto.2013.12.010. Epub 2014 Jan 4.
Involvement of TACE in colon inflammation: a novel mechanism of regulation via SIRT-1 activation.
Sharma M1, Mohapatra J1, Wagh A1, Patel HM1, Pandey D1, Kadam S1, Argade A2, Deshpande SS3, Shah GB3, Chatterjee A4, Jain MR1.
Abstract
TNF-α
converting enzyme (TACE) processes the membrane TNF-α to release the
bioactive soluble TNF-α. Several evidences suggest the involvement of
TNF-α and TACE in inflammatory bowel disease (IBD).
Tissue inhibitor of metalloproteinase (TIMP)-3, an endogenous inhibitor
of TACE, is positively associated with silent information regulator
(SIRT)-1. We aimed to study the expression of TACE, TIMP-3 and SIRT-1 at
different stages of colitis and how TACE is regulated in response to
SIRT-1 activation.
Acute colitis was induced by 3.5% dextran sulfate sodium (DSS) in drinking water for 5days and levels of cytokines and mRNA expression of TACE, TIMP-3 and SIRT-1 were measured in colon at different time intervals. Next, the effect of SIRT-1 activator (resveratrol) or a selective TACE inhibitor (compound 11p) treatment was evaluated. Elevated levels of TNF-α, interleukin (IL)-6, IL-1β, interferon (IFN)-γ and IL-17 were observed during DSS exposure phase which restored to the normal level after DSS removal. A significant increase in TACE and suppression in TIMP-3 and SIRT-1 mRNA level was observed during DSS exposure phase which reverts back to normal towards the remission phase. Treatment with resveratrol significantly elevated SIRT-1 and TIMP-3 and suppressed TACE mRNA expression and was associated with amelioration of disease. Furthermore, treatment with selective TACE inhibitor significantly suppressed body weight loss, disease activity index, colonic myeloperoxidase activity and the elevated levels of cytokines after DSS challenge. These results strongly emphasize the involvement of TACE in colon inflammation and inhibition of TACE directly or indirectly via SIRT-1 activation ameliorates colitis.
Acute colitis was induced by 3.5% dextran sulfate sodium (DSS) in drinking water for 5days and levels of cytokines and mRNA expression of TACE, TIMP-3 and SIRT-1 were measured in colon at different time intervals. Next, the effect of SIRT-1 activator (resveratrol) or a selective TACE inhibitor (compound 11p) treatment was evaluated. Elevated levels of TNF-α, interleukin (IL)-6, IL-1β, interferon (IFN)-γ and IL-17 were observed during DSS exposure phase which restored to the normal level after DSS removal. A significant increase in TACE and suppression in TIMP-3 and SIRT-1 mRNA level was observed during DSS exposure phase which reverts back to normal towards the remission phase. Treatment with resveratrol significantly elevated SIRT-1 and TIMP-3 and suppressed TACE mRNA expression and was associated with amelioration of disease. Furthermore, treatment with selective TACE inhibitor significantly suppressed body weight loss, disease activity index, colonic myeloperoxidase activity and the elevated levels of cytokines after DSS challenge. These results strongly emphasize the involvement of TACE in colon inflammation and inhibition of TACE directly or indirectly via SIRT-1 activation ameliorates colitis.
KEYWORDS:
Inflammatory bowel disease; SIRT-1; TNF-α; TNF-α converting enzyme- PMID:
- 24548422
- DOI:
- 10.1016/j.cyto.2013.12.010
Etiketter:
IBD,
resveratroli,
SIRT-1,
TACE,
TIMP-3
onsdag 14 november 2018
TACE/ADAM17 (2p25.1) uusimmat artikkelit PubMed . MUC1- sheddaasi
2016 PubMed artikkeleita: ADAM17/ TACE
https://www.ncbi.nlm.nih.gov/gene/6868
- Preferred Names
- a disintegrin and metalloproteinase domain-containing protein 17
- Names
- ADAM metallopeptidase domain 18
- TNF-alpha convertase
- TNF-alpha converting enzyme
- snake venom-like protease
- tumor necrosis factor, alpha, converting enzyme
- Also known as
- CSVP; TACE; NISBD; ADAM18; CD156B; NISBD1
- Summary
- This gene encodes a member of the ADAM (a disintegrin and metalloprotease domain) family. Members of this family are membrane-anchored proteins structurally related to snake venom disintegrins, and have been implicated in a variety of biologic processes involving cell-cell and cell-matrix interactions, including fertilization, muscle development, and neurogenesis. The encoded preproprotein is proteolytically processed to generate the mature protease. The encoded protease functions in the ectodomain shedding of tumor necrosis factor-alpha, in which soluble tumor necrosis factor-alpha is released from the membrane-bound precursor. This protease also functions in the processing of numerous other substrates, including cell adhesion proteins, cytokine and growth factor receptors and epidermal growth factor (EGF) receptor ligands. The encoded protein also plays a prominent role in the activation of the Notch signaling pathway. Elevated expression of this gene has been observed in specific cell types derived from psoriasis, rheumatoid arthritis, multiple sclerosis and Crohn's disease patients, suggesting that the encoded protein may play a role in autoimmune disease. [provided by RefSeq, Feb 2016]
- Conserved Domains (4) summary
-
- smart00050
Location:484 → 560 - DISIN; Homologues of snake disintegrins
- cd04270
Location:223 → 477 - ZnMc_TACE_like; Zinc-dependent metalloprotease; TACE_like subfamily. TACE, the tumor-necrosis factor-alpha converting enzyme, releases soluble TNF-alpha from transmembrane pro-TNF-alpha.
- pfam01562
Location:56 → 152 - Pep_M12B_propep; Reprolysin family propeptide
- pfam16698
Location:581 → 641 - ADAM17_MPD; Membrane-proximal domain, switch, for ADAM17
- smart00050
Related articles in PubMed
- A novel inhibitor of ADAM17 sensitizes colorectal cancer cells to 5-Fluorouracil by reversing Notch and epithelial-mesenchymal transition in vitro and in vivo. Li DD, et al. Cell Prolif, 2018 Oct. PMID 30069943
- ADAM-17 is expressed in the inflammatory myopathy and is involved with interstitial lung disease. Nishimi A, et al. Clin Rheumatol, 2018 Apr. PMID 29411180
- Short hairpin RNA-mediated gene silencing of ADAM17 inhibits the growth of breast cancer MCF‑7 cells in vitro and in vivo and its mechanism of action. Hu B, et al. Oncol Rep, 2018 Apr. PMID 29393483, Free PMC Article
- ADAM17, a New Player in the Pathogenesis of Chronic Kidney Disease-Mineral and Bone Disorder. Perna AF, et al. J Ren Nutr, 2017 Nov. PMID 29056164
- The shedding protease ADAM17: Physiology and pathophysiology. Zunke F, et al. Biochim Biophys Acta Mol Cell Res, 2017 Nov. PMID 28705384
GeneRIFs: Gene References Into FunctionsWhat's a GeneRIF?
- ADAM17 activation and secretion in the myeloid cells during HIV infection.
- A novel ADAM17 inhibitor ZLDI-8 may be a potential chemosensitizer which sensitized CRC cells to 5-fluorouracil or irinotecan by reversing Notch and EMT pathways.
- The isolated membrane proximal domain (MPD) of ADAM17 binds to phosphatidylserine (PS) but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells.
- ADAM-17 in inflammatory myopathy was significantly higher than that in healthy control. ADAM-17 in post-treatment with corticosteroid and/or immunosuppressant serum was significantly decreased compared with that in pre-treatment serum.
- The present research suggests that ADAM17shRNA can inhibit MCF7 cell invasion and proliferation in vitro and inhibit MCF7 xenograft growth in vivo through the EGFR/PI3K/AKT and EGFR/MEK/ERK signaling pathways.
- Uev1A-Ubc13 complex catalyzes lysine63-linked ubiquitination of RHBDF2 to promote TACE maturation.
- ADAM17 plays a role in chronic kidney disease-mineral and bone disorder.
- Insulin-like growth factor-1 activates different catalytic subunits p110 of PI3K in a cell-type-dependent manner to induce lipogenesis-dependent epithelial-mesenchymal transition through the regulation of ADAM10 and ADAM17.
- ADAM17 is the main sheddase for the generation of human triggering receptor expressed in myeloid cells (hTREM2) ectodomain and cleaves TREM2 after Histidine 157. Findings reveal a link between shedding of TREM2 and its regulation during inflammatory conditions or chronic neurodegenerative disease in which activity or expression of sheddases might be altered.
- Oxidative stress is correlated with hyperactivation of the ADAM17/Notch signaling pathway and a consequent increase in fibrosis in patients with endometriosis.
ADAM17 (TACE) substraatit , EBOV glykoproteiini joukossa
2019 https://www.ncbi.nlm.nih.gov/pubmed/28893955/
NK - Cytokiinit - NKG2D akselista ADAM17 aktiivisuus lisääntyy ja TNF-alfaa vapautuu.
2018
https://www.sciencedirect.com/science/article/pii/S0167488917301878#t0005
NK - Cytokiinit - NKG2D akselista ADAM17 aktiivisuus lisääntyy ja TNF-alfaa vapautuu.
J Immunol. 2017 Oct 15;199(8):2865-2872. doi: 10.4049/jimmunol.1700647. Epub 2017 Sep 11.
NKG2D Signaling between Human NK Cells Enhances TACE-Mediated TNF-α Release.
NK
group 2 member D (NKG2D) is a strong NK cell-activating receptor, with
engagement by ligands triggering granule release and cytokine
production. The function of NKG2D signaling in NK cells has largely been
studied in the context of engagement of the receptor by ligands
expressed on the surface of target cells. We report that upon activation
with IL-12, IL-15, and IL-18 human NK cells express NKG2D ligands of
the UL16 binding protein family on the cell surface. NKG2D-ligand
interaction between cytokine-stimulated NK cells increases the activity
of the metalloprotease TNF-α-converting enzyme (ADAM 17/TACE) . This enhanced
TNF-α-converting enzyme activity significantly increases the release of
TNF-α and UL16 binding protein from the surface of the NK cells. These
results demonstrate that NKG2D signaling is critical for maximal TNF-α
release by NK cells. Further, they demonstrate a role for NKG2D-ligand
interaction via homotypic NK cell contact in NK cell effector function. Copyright © 2017 by The American Association of Immunologists, Inc.
2018
https://www.sciencedirect.com/science/article/pii/S0167488917301878#t0005
1. Introduction
It was discovered in 1988 that the pro-inflammatory mediator tumor necrosis factor alpha (TNFα) was synthesized as a transmembrane protein, which needs to be proteolytically cleaved to be systemically active [1]. Since then, many researchers tried to identify the responsible proteolytic activity, which was believed to be an important therapeutic target.
In 1994, it was reported that the TNFα
cleaving enzyme was a metalloprotease (MMP), which could be inhibited by
hydroxamic acid compounds. This hydroxamate not only reduced LPS-induced
TNFα levels in vivo but also rescued mice from lethal septic shock confirming the TNFα cleaving enzyme being a promising therapeutic target [2].
(1997 ) Three years later, cDNAs coding for human and murine TNFα cleaving enzyme were cloned [3], [4], which showed that the enzyme is a membrane bound metalloprotease (MT-MMP) , which belonged to the family of disintegrin metalloproteases called adamalysins or ADAMs [5]. Subsequently, the TNFα cleaving enzyme was renamed ADAM17 [5].
ADAM17 knock-out animals turned out not to be viable [6]. Moreover, they showed an open eye phenotype at birth, which was reminiscent of mice lacking transforming growth factor alpha (TGFα), a ligand of the epidermal growth factor receptor (EGF-R). Since all ligands of the EGF-R are transmembrane proteins, which need to be cleaved in order to act systemically [7] it was hypothesized that ligands of the EGF-R were substrates of ADAM17 [6]. This was supported by data indicating that l-selectin, IL-6R and TGFα were processed by the same protease [8]. Meanwhile we know that ADAM17 has more than 80 substrates ranging from cytokines, growth factors, receptors to many cell adhesion molecules (Table 1) [9].
Therefore, it is not surprising that the biology of ADAM17 is complex
and the protease is involved in the regulation of many body functions
and developmental processes.
2. The shedding enzyme ADAM17
At least 10% of all cell surface proteins are believed to be proteolytically cleaved leading to the release of soluble proteins [10], [11]. As outlined above, ADAM17 was the first shedding protease to be molecularly characterized and it was shown to consist of an N-terminal signal sequence followed by a pro-domain, a metalloproteinase or catalytic domain, a disintegrin domain, a cysteine-rich membrane proximal domain, a single transmembrane domain and a cytoplasmic portion (Fig. 1) [3], [4].
Immune system | Development, differentiation | Cell adhesion | Others |
---|---|---|---|
IL-1RII | TGFα | ALCAM | ACE-2 |
IL-6R | Hb-EGF | CD44 | APP |
IL-15R | AREG | CD62L (L-selectin) | APP-like protein2 |
CX3CL1 (fractalkine) | Epigen | Collagen XVII | Carbonic hydrolase 9 |
M-CSFR | EREG | Desmoglein 2 | Prion protein |
TNF-RI | NRG1 | EpCam | Ebola virus glycoprotein |
TNF-RII | FLT-3L | ICAM-1 | EPCR |
LDL-R | KL-1 | JAM-A | GPIba |
SORL1 | KL-2 | L1-CAM | GPV |
SORT1 | Jagged | NCAM | GPVI |
SORCS1 | DLL1 | Nectin-4 | Klotho |
SORCS3 | Notch1 | SynCAM1 | Muc-1, Episialin |
TNFα | GH-R | VACM-1 | NPR |
Lymphotoxin α | IGF2-R | Pre-adipocyte factor | |
RANKL (TRANCE) | HER4 (ErbB4) | Ptprz | |
CSF-1 | TrkA | ||
TIM-1 | VEGF-R2 | ||
TIM-3 | LYPD3 | ||
TIM-4 | PMEL17 | ||
MIC-A | PTP-LAR | ||
MIC-B | SEMA4D | ||
LAG-3 | Syndecan1 | ||
CD16 | Syndecan4 | ||
CD30 (TNFRSF8) | TEMEFF2 | ||
CD36 | Vasorin | ||
CD40 (TNFRSF5) | |||
CD89 | |||
CD91 (APOER) | |||
CD163 | |||
ICOS-L |
MUC1 musiini, TACE ja MT-MMP
MUC1
tietoa lisää:
Cell Death Dis. 2014 Oct; 5(10): e1438. |
MUC1
irtoaminen ”lehteily” tai ”hilseily” epiteelisolusta
tyviosansa kompleksista
ei tapahdu ilman säätelyä ja
siinä
säätelevät
” sheddase”
entsyymit
ovat MT-MMP ja TACE.
Etiketter:
MT1-MMP,
Musiini 1 MUC1,
TACE/ADAM17
onsdag 10 oktober 2018
"MMP, Autophagosome" ( PubMed Haku)
https://www.ncbi.nlm.nih.gov/pubmed/?term=MMP%2C+Autophagosome
Latkripiini 1
2.
Batool S, Joseph TP, Hussain M, Vuai MS, Khinsar KH, Din SRU, Padhiar AA, Zhong M, Ning A, Zhang W, Cao J, Huang M.
Int J Mol Sci. 2018 Sep 30;19(10). pii: E2986. doi: 10.3390/ijms19102986.PMID:30274346
Present study aimed to elucidate the
anticancer effect and the possible molecular mechanism underlying the
action of Latcripin 1 (LP1), from the mushroom Lentinula edodes strain C91-3
against gastric cancer cell lines SGC-7901 and BGC-823. Cell viability
was measured by Cell Counting Kit-8 (CCK-8); morphological changes were
observed by phase contrast microscope; autophagy was determined by
transmission electron microscope and fluorescence microscope. Apoptosis
and cell cycle were assessed by flow cytometer; wound-healing, transwell
migration and invasion assays were performed to investigate the effect
of LP1 on gastric cancer cell's migration and invasion. Herein, we found
that LP1 resulted in the induction of autophagy by the formation of autophagosomes
and conversion of light chain 3 (LC3I into LC3II.
LP1 up-regulated the expression level of autophagy-related gene (Atg7, Atg5, Atg12, Atg14) and Beclin1; increased and decreased the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins respectively, along with the activation of Caspase-3.
At lower-doses, LP1 have shown to arrest cells in the S phase of the cell cycle and decreased the expression level of matrix metalloproteinase MMP-2 and MMP-9.
In addition, it has also been shown to regulate the phosphorylation of one of the most hampered gastric cancer pathway, that is, protein kinase B/mammalian target of rapamycin (Akt/mTOR) channel and resulted in cell death.
These findings suggested LP1 as a potential natural anti-cancer agent, for exploring the gastric cancer therapies and as a contender for further in vitro and in vivo investigations.KEYWORDS:
LP1 up-regulated the expression level of autophagy-related gene (Atg7, Atg5, Atg12, Atg14) and Beclin1; increased and decreased the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins respectively, along with the activation of Caspase-3.
At lower-doses, LP1 have shown to arrest cells in the S phase of the cell cycle and decreased the expression level of matrix metalloproteinase MMP-2 and MMP-9.
In addition, it has also been shown to regulate the phosphorylation of one of the most hampered gastric cancer pathway, that is, protein kinase B/mammalian target of rapamycin (Akt/mTOR) channel and resulted in cell death.
These findings suggested LP1 as a potential natural anti-cancer agent, for exploring the gastric cancer therapies and as a contender for further in vitro and in vivo investigations.KEYWORDS:
Latcripin 1; Lentinula edodes; apoptosis; autophagy; gastric cancer; metastasis
3.
Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA.
J Trace Elem Med Biol. 2018 Dec;50:283-290. doi: 10.1016/j.jtemb.2018.07.016. Epub 2018 Jul 20.PMID:30262293
4.
Li CX, Cui LH, Zhuo YZ, Hu JG, Cui NQ, Zhang SK.
Life Sci. 2018 Sep 1;208:276-283. doi: 10.1016/j.lfs.2018.07.049. Epub 2018 Jul 26.PMID:30056017
AbstractAIMS:Autophagy
is an intracellular metabolic process that degrades and recycles own
constituents to maintain homeostasis and supply substrates. Disruption
of collagen degradation is one of the pathogenesis of pancreatic
fibrosis. In this study, we investigated the effects of inhibiting
autophagy on the collagen degradation of PSCs. MAIN METHODS:
... Autophagosome
was confirmed by transmission electron microscope. Immunofluorescence
for LC3B and α-SMA were applied to assess autophagy and activated PSCs.
The effects of autophagy inhibition of 3-MA on the expressions of LC3B,
Atg5, and Beclin-1 were investigated by real-time PCR and Western
blotting, as well as the α-SMA, TGF-β1, ColI, Col III, FN, MMP-2, MMP-13, TIMP-1 and TIMP-2. Meanwhile, the secretion of ColI, Col III and FN were investigated by ELISA. KEY FINDINGS:
The LC3-II/I ratio was increased in rat CP model. Autophagosomes
and an increased autophagic level were observed during PSCs activation.
Inhibiting autophagy could down-regulate the expressions of α-SMA,
TGF-β1, FN, ColI, Col III, TIMP-1 and TIMP-2, while the expressions of MMP-2 and MMP-13 were increased. SIGNIFICANCE: This
study confirmed that autophagic level is increased during PSCs
activation in vivo and in vitro. Inhibiting autophagy prevents the
activation of PSCs, and suppresses fibrosis through promoting
extracellular matrix (ECM) degradation by decreasing the expression of
TGF-β1 and increasing MMPs/TIMPs ratio.Copyright © 2018 Elsevier Inc. All rights reserved.KEYWORDS:
Autophagy; Collagen; LC3B; Pancreatic stellate cells; α-SMA
5.
Meng Z, Shen B, Gu Y, Wu Z, Yao J, Bian Y, Zeng D, Chen K, Cheng S, Fu J, Peng L, Zhao Y.
J Cell Biochem. 2018 Jun 28. doi: 10.1002/jcb.27145. [Epub ahead of print] PMID: 29953665
Accumulating evidence suggests that
autophagy plays a protective role in chondrocytes and prevents cartilage
degeneration in osteoarthritis (OA). The objective of this study was to
investigate the effect of diazoxide on chondrocyte death and cartilage
degeneration and to determine whether these effects are correlated to
autophagy in experimental OA. In this study, a cellular OA model was
established by stimulating SW1353 cells with interleukin 1β. A rat OA
model was generated by transecting the anterior cruciate ligament
combined with the resection of the medial menisci, followed by treatment
with diazoxide or diazoxide combination with 3-methyladenine. The
percentage of viable cells was evaluated using
calcein-acetoxymethyl/propidium iodide double staining. The messenger
RNA expression levels of collagen type II alpha 1 chain (COL2A1), matrix
metalloproteinase 13 (MMP-13),
TIMP metallopeptidase inhibitor 1 (TIMP-1), and a disintegrin and
metalloproteinase with thrombospondin motifs 5 (ADAMTS5) were determined
using quantitative real-time polymerase chain reaction. The cartilage
thickness and joint space were evaluated using ultrasound. SW1353 cell
degeneration and autophagosomes
were observed using transmission electron microscopy. The expression
levels of microtubule-associated protein 1 light chain 3 (LC3),
beclin-1, P62, COL2A1, and MMP-13
were evaluated using immunofluorescence staining and Western blot
analysis. Diazoxide significantly attenuated articular cartilage
degeneration and SW1353 cell death in experimental OA. The restoration
of autophagy was observed in the diazoxide-treated group. The beneficial
effects of diazoxide were markedly blocked by 3-methyladenine.
Diazoxide treatment also modulated the expression levels of OA-related
biomarkers. These results demonstrated that diazoxide exerted a
chondroprotective effect and attenuated cartilage degeneration by
restoring autophagy via modulation of OA-related biomarkers in
experimental OA. Diazoxide treatment might be a promising therapeutic
approach to prevent the development of OA.KEYWORDS:
SW1353 cell; autophagy; diazoxide; osteoarthritis; osteoarthritis-related biomarker
(Ajatuksia herättävä artikkeli: siis modulointia solukaliumin ja kalsiumin suhteen nivelrustotasossa!)
(Ajatuksia herättävä artikkeli: siis modulointia solukaliumin ja kalsiumin suhteen nivelrustotasossa!)
7.
Hong JM, Shin JK, Kim JY, Jang MJ, Park SK, Lee JH, Choi JH, Lee SM.
Biol Pharm Bull. 2018 Aug 1;41(8):1257-1268. doi: 10.1248/bpb.b18-00207. Epub 2018 May 23.
- PMID:
- 29794403
8.
Lin H, Zhang C, Zhang H, Xia YZ, Zhang CY, Luo J, Yang L, Kong LY.
Phytomedicine. 2018 Mar 15;42:190-198. doi: 10.1016/j.phymed.2018.03.046. Epub 2018 Mar 19.
- PMID:
- 29655686
9.
Yang F, Liao J, Pei R, Yu W, Han Q, Li Y, Guo J, Hu L, Pan J, Tang Z.
Chemosphere. 2018 Aug;204:36-43. doi: 10.1016/j.chemosphere.2018.03.192. Epub 2018 Mar 29.
- PMID:
- 29649662
10.
You P, Wu H, Deng M, Peng J, Li F, Yang Y.
Biomed Pharmacother. 2018 Feb;98:619-625. doi: 10.1016/j.biopha.2017.12.057. Epub 2017 Dec 29.
- PMID:
- 29289836
11.
Hong YJ, Ahn HJ, Shin J, Lee JH, Kim JH, Park HW, Lee SK.
J Reprod Immunol. 2018 Feb;125:56-63. doi: 10.1016/j.jri.2017.12.001. Epub 2017 Dec 14.
- PMID:
- 29253794
12.
Lombardo T, Folgar MG, Salaverry L, Rey-Roldán E, Alvarez EM, Carreras MC, Kornblihtt L, Blanco GA.
Basic Clin Pharmacol Toxicol. 2018 May;122(5):489-500. doi: 10.1111/bcpt.12945. Epub 2018 Jan 3.
- PMID:
- 29205851
13.
Lv W, Sui L, Yan X, Xie H, Jiang L, Geng C, Li Q, Yao X, Kong Y, Cao J.
Chem Biol Interact. 2018 Jan 5;279:136-144. doi: 10.1016/j.cbi.2017.11.013. Epub 2017 Nov 24.
- PMID:
- 29179951
14.
Wu Q, Gao C, Wang H, Zhang X, Li Q, Gu Z, Shi X, Cui Y, Wang T, Chen X, Wang X, Luo C, Tao L.
Int J Biochem Cell Biol. 2018 Jan;94:44-55. doi: 10.1016/j.biocel.2017.11.007. Epub 2017 Nov 22.
- PMID:
- 29174311
15.
Bai F, Huang Q, Nie J, Lu S, Lu C, Zhu X, Wang Y, Zhuo L, Lu Z, Lin X.
Cell Physiol Biochem. 2017;44(2):436-446. doi: 10.1159/000485009. Epub 2017 Nov 15.
- PMID:
- 29141243
16.
Ansari MY, Khan NM, Haqqi TM.
Biomed Pharmacother. 2017 Dec;96:198-207. doi: 10.1016/j.biopha.2017.09.140. Epub 2017 Oct 6.
- PMID:
- 28987943
17.
Yang F, Zhang L, Gao Z, Sun X, Yu M, Dong S, Wu J, Zhao Y, Xu C, Zhang W, Lu F.
Cell Physiol Biochem. 2017;43(3):1168-1187. doi: 10.1159/000481758. Epub 2017 Oct 5.
- PMID:
- 28977784
18.
Ling Y, Gong Q, Xiong X, Sun L, Zhao W, Zhu W, Lu Y.
Oncotarget. 2017 May 7;8(31):51066-51075. doi: 10.18632/oncotarget.17654. eCollection 2017 Aug 1.
- PMID:
- 28881630
19.
Li Q, Kang J, Xiong X, Liu Y, Cao W, Liu Y, Li Y.
Oncol Lett. 2017 Aug;14(2):2097-2102. doi: 10.3892/ol.2017.6394. Epub 2017 Jun 16.
- PMID:
- 28789437
20.
Song D, Ma J, Chen L, Guo C, Zhang Y, Chen T, Zhang S, Zhu Z, Tian L, Niu P.
Metallomics. 2017 Sep 20;9(9):1251-1259. doi: 10.1039/c7mt00085e.
- PMID:
- 28661534
Autofagosomibiogeneesi (2013 )( mitokondria, syntaxiini17 etc, starvaatio )
https://www.nature.com/articles/cr2013159#f2
- Abstract
- Introduction
- Atg proteins
- The Atg1/ULK complex
- The class III PI3K complex and the Atg2-Atg18/WIPI complex
- The Atg12 conjugation system
- The Atg8/LC3 conjugation system
- Atg9 vesicles
- Searching for the origin of the autophagosomal membrane
- Autophagosome formation on the ER
- ER-mitochondria contact sites
- ER exit sites
- The ER-Golgi intermediate compartment (ERGIC)
- The plasma membrane and recycling endosomes
- Atg9 vesicles as a membrane source
- Autophagosome formation in selective autophagy
- Concluding remarks
- References
- Acknowledgements
- Author information
- Rights and permissions
- About this article
- Further reading
Miten Legionella LCV pääse irti mitokondriasta, johon se ajautuu , ja nitistää Syntaxiinin17 ja miksi.
LCV vakuolin tutkimuksissa on havaittu sen joutuvan mitokondriokontaktiin hetkiseksi ja sitten irtoavan välttäen endosyyttisiä kuljetusteitä ja liittyen ER-Golgi retrogradiseen kalvomateriaaliin.
Tästä löytyy selvitys viime vuoden artikkelissa, toukokuu 2017.
Legionellan effektoriproteiini Lpg1137 katkaisee ER- mitokondriakommunikaation pilkkomalla syntaksiini17- proteiinin.
LÄHDE:
https://www.ncbi.nlm.nih.gov/pubmed/28504273
Tiivistelmästä suomennosta.
Tästä löytyy selvitys viime vuoden artikkelissa, toukokuu 2017.
Legionellan effektoriproteiini Lpg1137 katkaisee ER- mitokondriakommunikaation pilkkomalla syntaksiini17- proteiinin.
LÄHDE:
https://www.ncbi.nlm.nih.gov/pubmed/28504273
Nat Commun. 2017 May 15;8:15406. doi: 10.1038/ncomms15406.
Legionella effector Lpg1137 shuts down ER-mitochondria communication through cleavage of syntaxin 17. Arasaki K1, Mikami Y1, Shames SR2, Inoue H1, Wakana Y1, Tagaya M1Tiivistelmästä suomennosta.
Makrofagin infektoitumisen aikana patogeeninen legionella pneumophilabakteeri erittää effektoriproteiineja, jotka indusoivat konversion plasmakalvoperäisesta vakuolista endoplasmisen retikulumin kaltaiseksi replikatiiviseksi vakuoliksi. Nämä endoplasmista verkostoa (ER) muistuttavat vakuolit (LCV) lopuksi fuusioituvat endoplasmiseen verkostoon (ER), jossa patogeeni replikoituu.
Tässä työssään tutkijat osoittavat, että L. pneumophilan efsektori Lpg1137 on eräs seriiniproteaasi, jonka vaikutuskohde on mitokondria ja siihen assosioituneet kalvot.
Lpg1137 sitoutuu syntaxiin 17 ja pilkkoo sen.
Syntaxiini 17 on eräs liukoinen N-etyylimaleimidi-sensitiiviseen faktoriin liittyvä proteiinireseptori (SNARE) -proteiini, jonka tiedetään osallistuvan mitokondrian dynamiikan säätelyyn tekemällä interaktio mitokondrian fissiofaktorin Drp1 kanssa ravintoa saavissa soluissa ja autofagiaan Atg14L:n ja muiden SNARE-proteiinien kanssa nälkätilassa olevassa solussa.
Kun Syntaxiini 17 pilkkoutuu, estyy sekä autofagia että stauroporiinilla indusoituva apoptoosi, jota Bax, Drp-1:stä riippuvalla tavalla tapahtuu.
Täten Legionella pneumophila voi tukkia ER- mitokondria - kommunikaation pilkkomalla syntaxiini17 -proteiinin.
Tässä työssään tutkijat osoittavat, että L. pneumophilan efsektori Lpg1137 on eräs seriiniproteaasi, jonka vaikutuskohde on mitokondria ja siihen assosioituneet kalvot.
Lpg1137 sitoutuu syntaxiin 17 ja pilkkoo sen.
Syntaxiini 17 on eräs liukoinen N-etyylimaleimidi-sensitiiviseen faktoriin liittyvä proteiinireseptori (SNARE) -proteiini, jonka tiedetään osallistuvan mitokondrian dynamiikan säätelyyn tekemällä interaktio mitokondrian fissiofaktorin Drp1 kanssa ravintoa saavissa soluissa ja autofagiaan Atg14L:n ja muiden SNARE-proteiinien kanssa nälkätilassa olevassa solussa.
Kun Syntaxiini 17 pilkkoutuu, estyy sekä autofagia että stauroporiinilla indusoituva apoptoosi, jota Bax, Drp-1:stä riippuvalla tavalla tapahtuu.
Täten Legionella pneumophila voi tukkia ER- mitokondria - kommunikaation pilkkomalla syntaxiini17 -proteiinin.
- During infection of macrophages, the pathogenic bacterium Legionella pneumophila secretes effector proteins that induce the conversion of the plasma membrane-derived vacuole into an endoplasmic reticulum (ER)-like replicative vacuole. These ER-like vacuoles are ultimately fused with the ER, where the pathogen replicates. Here we show that the L. pneumophila effector Lpg1137 is a serine protease that targets the mitochondria and their associated membranes. Lpg1137 binds to and cleaves syntaxin 17, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein that is known to participate in the regulation of mitochondrial dynamics through interaction with the mitochondrial fission factor Drp1 in fed cells and in autophagy through interaction with Atg14L and other SNAREs in starved cells. Cleavage of syntaxin 17 inhibits not only autophagy but also staurosporine-induced apoptosis occurring in a Bax, Drp1-dependent manner. Thus, L. pneumophila can shut down ER-mitochondria communication through cleavage of syntaxin 17. PMID:28504273 PMCID: PMC5440676 DOI: 10.1038/ncomms15406
Sitaatti yksityiskohdasta.
Syntaxin 17 (Stx17) is a SNARE originally implicated in a
vesicle-trafficking step to the smooth-surfaced tubular ER membranes
that are abundant in steroidogenic cells14.
Stx17 is unique in that it has a long hairpin-like C-terminal
hydrophobic domain (CHD), followed by a cytoplasmic basic region. Stx17
participates in cellular events unrelated to membrane fusion.
In fed
cells, Stx17 promotes mitochondrial fission by defining the localization
and activity of the mitochondrial fission factor Drp1 (ref. 15).
On starvation, on the other hand, Stx17 dissociates from Drp1 and
associates with Atg14L, a subunit of the phosphatidylinositol 3-kinase (PI3K)
complex. This promotes the recruitment of this kinase to the
mitochondria-associated ER membrane (MAM)16,
which leads to the formation of phosphatidylinositol 3-phophate
(PI3P)-enriched omegasomes that are considered to represent a
membrane/lipid source for autophagosomes17,18.
In the late stage of autophagy, Stx17 present on autophagosomes mediates the fusion of autophagosomes with lysosomes19,20,21.
In this study, we show that Stx17 is degraded on Legionella infection. We identify the Legionella
effector Lpg1137 as the responsible protein for Stx17 breakdown and
show that Lpg1137 is a serine protease that localizes to the
ER–mitochondria contact site, where Stx17 is located.
Ihmisen MMP entsyymit voivat aktivoitua bakteerien proteinaaseilla
http://www.jbc.org/content/272/9/6059.full.html
Tatsuya Okamoto‡,§, Takaaki Akaike‡, Moritaka Suga§,
Sumio Tanase¶, Hidechika Horie‡, Seiya Miyajima‡,
Masayuki Ando§, Yoshio Ichinose∥ and Hiroshi Maeda‡**
Activation of Human Matrix Metalloproteinases by Various Bacterial Proteinases*
Tatsuya Okamoto‡,§, Takaaki Akaike‡, Moritaka Suga§,
Sumio Tanase¶, Hidechika Horie‡, Seiya Miyajima‡,
Masayuki Ando§, Yoshio Ichinose∥ and Hiroshi Maeda‡**
Legionellan effektoriproteiini AnkB vaatii isäntäsolulta FIH/ asparaginyylihydroksylaation
https://www.karger.com/Article/Pdf/235770
LÄHDE:
Front Cell Infect Microbiol. 2017 Mar 6;7:54. doi: 10.3389/fcimb.2017.00054. eCollection 2017.
Host FIH-Mediated Asparaginyl Hydroxylation of Translocated Legionella pneumophila Effectors.
LÄHDE:
Front Cell Infect Microbiol. 2017 Mar 6;7:54. doi: 10.3389/fcimb.2017.00054. eCollection 2017.
Host FIH-Mediated Asparaginyl Hydroxylation of Translocated Legionella pneumophila Effectors.
Price C1, Merchant M2, Jones S1, Best A1, Von Dwingelo J1, Lawrenz MB3, Alam N4, Schueler-Furman O4, Kwaik YA3.
Abstraktin suomennos.
FIH-välitteinen posttranslationaalinen modifikaatio Asn--hydroxylaatiolla merkitsee eukaryoottisille proteiiniella proteiini-proteiini-interaktiossa olennaista seikkaa.
Yhdestätoista Legionella pneumophilasta (siis sen translokoituneista effektoreista) on identifioitu FIH-tunnistusmotiivi , yersiniasta YopM, Shigellasta IpaH4.5 ja Ricketssiasta ankyriiniproteiini.
Massapsketromeriset analyysit L. opneumophilan AnkB ja AnkH effektoriproteiinista vahvastiaa , että niisä on tapahtunut asparainyylihydroksylaatio.
AnkB.effektoria lokalisoituu Lpn -bakteeria sisältävään LCV vakuoliin ja se osoittautuu FIH-modifiaation saaneeksi. Isäntäsolun proteiineista sen kanssa interaktion tekevät Mint2 ja MT1-MMP, joita legionellaa sisältävä vakuoli (LCV) vaatii Dot/Icm tyyppi IV-sekreetiosta riippuvalla tavalla.
Jos estetään FHI kemiallisesti tai RNAi-välitteisellä FHI poistogeenisyydellä , legionella pneumophilan intravakuolaarinen replikaatio kumoutuu. Nämä tiedot osoittavat, että patogeenia sisältävä vakuoli hankkii isäntäkehosta FIH ja että asparaginyylihydroksylaatio on välttämätön translokoituneille efektoriproteiineille , jota ne voisivat olla funktionaalisia.
- Abstract
- FIH-mediated
post-translational modification through asparaginyl hydroxylation of
eukaryotic proteins impacts regulation of protein-protein interaction. We have identified the FIH recognition motif in 11 Legionella pneumophila translocated effectors, YopM of Yersinia, IpaH4.5 of Shigella and an ankyrin protein of Rickettsia. Mass spectrometry analyses of the AnkB and AnkH effectors of L. pneumophila confirm their asparaginyl hydroxylation. Consistent with localization of the AnkB effector to the Legionella-containing
vacuole (LCV) membrane and its modification by FIH, our data show that
FIH and its two interacting proteins, Mint3 and MT1-MMP are acquired by
the LCV in a Dot/Icm type IV secretion-dependent manner. Chemical inhibition or RNAi-mediated knockdown of FIH promotes LCV-lysosomes fusion, diminishes decoration of the LCV with polyubiquitinated proteins, and abolishes intra-vacuolar replication of L. pneumophila. These data show acquisition of the host FIH by a pathogen-containing vacuole and that asparaginyl-hydroxylation of translocated effectors is indispensable for their function.KEYWORDS: AnkB; Dot/Icm; FIH; Legionella; ankyrin; asparagine hydroxylation; bacterial pathogenesis; hypoxia-inducible factor (HIF).
Mikä on FIH-välitteinen posttranslationaalinen modifikaatio asn-hydroksylaatiolla?
https://www.frontiersin.org/articles/10.3389/fcimb.2017.00054/full
---Citate:
Although intracellular bacterial pathogens have been shown to exploit various host post-translational machineries, their exploitation of the host asparaginyl hydroxylation post-translational modification has never been described. The 2-oxoglutarate dioxygenase, designated as factor inhibiting HIF1 (FIH), is a key eukaryotic enzyme, which selectively hydroxylates an asparagine residue within the L(X)5[D/E]φNφ motif (φ represents aliphatic amino acids) in eukaryotic proteins (Hewitson et al., 2002; Lando et al., 2002a,b; Cockman et al., 2009). The addition of the strongly electronegative oxygen atom increases both polarity of a protein and can act as a hydrogen bond donor and acceptor. Therefore, hydroxylation can function as a “molecular switch” for protein-protein interactions (Loenarz and Schofield, 2011). FIH plays a key role in various cellular processes and in particular, it regulates the activity of hypoxia-inducible factor (HIF1), which is the master transcriptional regulator of hypoxia (Webb et al., 2009). During normoxia, HIF1 is hydroxylated by FIH on an asparagine residue and this modification acts as a molecular switch to prevent interaction with its co-activator p300/CBP, blocking transcription of hundreds of HIF1-regulated genes involved in oxygen homeostasis, energy production and immune responses (Hewitson et al., 2002; Lando et al., 2002a,b). In addition, FIH catalyzes asparaginyl hydroxylation of approximately 20 ankyrin repeat domain-containing (ARD) proteins such as p105 and IκBα (Cockman et al., 2009). FIH-dependent hydroxylation of the ARD protein, ASPP2, is required for binding of this protein to its target Par-3 (Janke et al., 2013). Therefore, asparaginyl hydroxylation acts as a molecular switch to promote or reduce protein-protein interactions between HIF1-p300/CBP and ASPP2-Par3 (Hewitson et al., 2002; Lando et al., 2002a,b; Janke et al., 2013). Additionally, FIH hydroxylates the deubiquitinase OTUB, which appears to regulate cellular metabolism (Scholz et al., 2016). A recent study has revealed a complex FIH interactome with many proteins that may serve as substrates for FIH enzyme activity, thus greatly expanding the number of eukaryotic proteins modified by asparaginyl hydroxylation (Rodriguez et al., 2016). However, the biological consequence of asparaginyl hydroxylation of eukaryotic proteins largely remains unclear.
When L. pneumophila invades amoebae or human macrophages, it evades the default endosomal-lysosomal degradation pathway and remodels its phagosome into a specialized ER-derived vacuole via intercepting ER-to-golgi vesicular traffic (Isberg et al., 2009; Al-Quadan et al., 2012; Price et al., 2014). This is achieved by the translocation of ~300 effector proteins via the Dot/Icm type IVB secretion system T4SS (de Felipe et al., 2008; Isberg et al., 2009; Zhu et al., 2011). These effectors modulate a myriad of eukaryotic processes including host signaling, vesicular trafficking, protein synthesis, apoptosis, prenylation, ubiquitination, and proteasomal degradation (Al-Quadan et al., 2012; Price et al., 2014). Surprisingly, very few of these effectors are essential for intracellular replication of L. pneumophila, suggesting specific requirements for different effectors in different environmental hosts.
The AnkB translocated effector is essential for proliferation of L. pneumophila within the two evolutionarily-distant hosts, mammalian and protozoan cells, and for intrapulmonary bacterial proliferation and manifestation of pulmonary disease in the mouse model (Al-Khodor et al., 2008; Price et al., 2009, 2010a,b, 2011; Lomma et al., 2010). Recent characterization of the crystal structure of AnkB has confirmed that it is a non-canonical F-box protein with three ankyrins repeats domain (Price et al., 2009; Lomma et al., 2010; Wong et al., 2017). The crystal structure has also confirmed that the F-box domain of AnkB interacts with the host SCF1 ubiquitin ligase, which explains show AnkB functions as a platform for the docking of polyubiquitinated proteins to the Legionella-containing vacuolar (LCV) membrane within macrophages and amoebae (Price et al., 2009; Lomma et al., 2010; Wong et al., 2017). The AnkB-assembled polyubiquitinated proteins are predominately Lys48-linked that are ultimately degraded by the host proteasome machinery, which generates higher levels of cellular amino acids that are the main sources of carbon and energy to power replication of L. pneumophila (Price et al., 2011). This enables intracellular bacteria to overcome host limitation of essential nutrients and favorable sources of carbon and energy, such as amino acids (Price et al., 2011; Abu Kwaik and Bumann, 2013).
- ( Tässä johdetaan solussa hajoitettavaksi tuomitut eli K48 polyubikitinoidut jäteproteiinit LCV vakuoliin, jossa Legionella käyttää niiden aineksen replikaatioon tarvittavana ravintona- asiaa ei solu varmaan pysty "huomaamaan").
Here we show that 11 L. pneumophila type IVB-translocated effectors including, AnkB and AnkH, harbor the recognition motif for FIH-dependent asparaginyl-hydroxylation. Furthermore, the FIH recognition motif is found in translocated effectors from other intracellular microbial pathogens including YopM from Yersinia pestis, IpaH4.5 of Shigella flexneri and a putative translocated ARD-protein of Rickettsia felis. We show that the AnkH and AnkB effectors are modified by asparaginyl hydroxylation. The LCV recruits FIH, which is indispensable for intra-vacuolar proliferation of L. pneumophila and plays a partial role in the ability of the LCV to evade lysosomal fusion and is needed for AnkB-dependent assembly of polyubiquitinated proteins on the LCV. This is the first example of an injected microbial effectors post-translationally modified by asparaginyl hydroxylation.
Acquisition of FIH, Mint3, and MT1-MMP by the LCV
The AnkB effector is localized to the LCV membrane through host-mediated farnesylation (Price et al., 2010b). In addition, the effectors LepB, SdeC, and SdcA which are potential candidates for FIH-mediated asparaginyl hydroxylation are also LCV-localized (Chen et al., 2004, 2007; Luo and Isberg, 2004; Bardill et al., 2005; Ingmundson et al., 2007; Tan et al., 2011). Since FIH is a cytosolic enzyme that can be sequestered to membranous structures such as the Golgi apparatus through interaction with Mint3 and MT1-MMP in macrophages (Sakamoto and Seiki, 2009, 2010) and the LCV intercepts ER-Golgi vesicular traffic (Isberg et al., 2009; Al-Quadan et al., 2012; Price et al., 2014), we determined if FIH and its two interacting partners (Mint3 and MT1-MMP) were recruited to the LCV within hMDMs.The data showed that by 2 h of infection, 75, 65, and 56% of the LCVs harboring wild type bacteria co-localized with FIH, Mint3, and MT1-MMP, respectively (Figures 2A–D). In contrast, only 27, 18.2, and 0% of the LCVs harboring the dotA translocation-deficient mutant co-localized with FIH, Mint3, and MT1-MMP, respectively (Figures 2A–D) and this was significantly reduced relative to co-localization observed for wild type LCVs (unpaired t-test, p < 0.01). This indicates recruitment of these proteins to the LCV is dependent on the Dot/Icm T4SS apparatus.- Jotta tämä F1H funktio saataisiin pyydystettyä LCV vakuoleihin, legionella T5SS systeemin on rekrytoitava myös Mint3 ja MT1-MMP, koska F1H on sytosolinen entsyymi ja näiden toisten tekijöiden avulla se saadaan saostumaan kalvoihin kuten ER-Golgi, jolloin se on legionellan tarpeisiin saatavissa ja sijoitettavissa LCV vakuoleihin.
---- Some citates from the article :-----
AnkB plays a central role for L. pneumophila by promoting the degradation of polyubiquitinated proteins which allows this organism to access essential amino acids that are used for both energy and a carbon source (Price et al., 2009, 2011). Substitution of the three hydroxylated asparagine residues significantly impacts the ability of AnkB to recruit polyubiquitinated proteins to the LCV and concomitantly fails to restore intra-vacuolar replication of an ankB mutant strain of L. pneumophila.
-----
Furthermore, blocking host FIH activity results in a similar phenotype to the AnkB substitutions, and taken together suggests that asparaginyl hydroxylation of AnkB contributes to the function of this effector.
Blocking FIH activity results in a dose-dependent inhibition of intra-vacuolar replication of L. pneumophila. Interestingly however, only ~55% of LCVs trafficked to a lysosomal compartment, indicating that the FIH-mediated block in intra-vacuolar replication of L. pneumophila has both lysosomal evasion-independent and -dependent mechanisms.
Both AnkB and AnkH are needed for intra-vacuolar proliferation of L. pneumophila but neither impacts the normal trafficking and biogenesis of the LCV (Al-Khodor et al., 2008; Habyarimana et al., 2008, 2010; Price et al., 2009, 2010a,b, 2011; Lomma et al., 2010).
------
The lysosomal evasion-dependent mechanism may involve both injected effectors, though no single injected effector to date has been shown to be required for the ability of the LCV to evade the lysosomes (de Felipe et al., 2008; Isberg et al., 2009; Zhu et al., 2011).
-----
Mint3
In macrophages, membrane-associated FIH is inactive, at least in terms of HIF1 hydroxylation activity, but through its binding to Mint3 it enables HIF1 to promote transcription of glycolytic genes that are needed by the macrophage to generate ATP (Sakamoto and Seiki, 2009, 2010).
------
L. pneumophila uses host amino acids as the primary source of carbon and energy by AnkB-dependent proteasomal degradation, but exogenous pyruvate alone can compensate for proteasomal degradation to enable intra-vacuolar replication of L. pneumophila (Price et al., 2011). This indicates that host pyruvate is an additional metabolite scavenged by intra-vacuolar L. pneumophila. Therefore, a consequence of FIH recruitment to the LCV may be increased HIF1 activity, which will ultimately increase availability of pyruvate that the bacteria can scavenge from the intracellular environment to use as an energy source and building block of macromolecules.
---
Original Research ARTICLE
Front. Cell. Infect. Microbiol., 06 March 2017 | https://doi.org/10.3389/fcimb.2017.00054
Prenumerera på:
Inlägg (Atom)