Etiketter
- -10
- -11)
- . sAPP:n normaali pilkkoja
- (Aortta9 aneurysma .
- <osteonektiini
- 2
- 3. (MMP-3
- 4 artikkelia
- 4 blade propel
- 4lehti-propellineni
- A Disintegrin And Metalloproteases
- Abeeta
- ABl2
- ACE1
- ACEI
- AD
- ADA10 geeniuutiset
- ADAM
- ADAM- molekyyleistä
- ADAM-15
- ADAM-17
- ADAM-17 inhibiittori
- ADAM-31
- ADAM-33
- ADAM-proteiiniperhe
- ADAM10
- ADAM10 alfasekretaasi
- ADAM10 ja ADAM17 degradomi
- ADAM12
- ADAM17
- ADAM17 (2p.25.1)
- ADAM17 (ACE2 eli TACE)
- ADAM17 (TACE)
- ADAM17 inhibiittorikehittely
- ADAM17 sheddaasi
- ADAM17 substraatteja yli 80
- ADAM18
- ADAM19
- ADAM20
- ADAM22
- ADAM27
- ADAM28
- ADAM30
- ADAM33
- ADAM9
- ADAMs
- ADAMTS
- ADAMTS & SVMPs
- ADAMTS perhe onkologiassa
- ADAMTS- proteinaasit ja 4 alaryhmää
- ADAMTS-13 ja sen vasta-aineet diagnostiikassa
- ADAMTS1
- ADAMTS13
- ADAMTS13 entsyymin puute
- ADAMTS15
- ADAMTS9 (Diabetes mellitus T2DM)
- Aggrekanaasi ja artriitti
- AGTR1 ( angiotensiinin II:n pääreseptori)
- AGTR2
- Aivokammio
- Aivotutkimusken edistyksistä
- Aktiivi D-vitamiini
- alendronate
- alfa-2M.
- alfa2-makroglobuliini
- alfasekretaasi
- ALL
- Amiloridi
- AML
- Angiogeneesin säätely
- angiostatiinin kaltaiset proteiinit
- Angiotensiini II
- Angiotensiini II ja maksavaurio
- Angiotensiini-II
- Angiotensiinin pilkkoutuminen
- Angiotensiinireseptori AT2
- anti-angiogeneettinen vaikutus
- antiangiogeeni
- antiangiogeeninen
- antioksidatiivinen polymeerikapselitekniikka
- antiparasiittinen
- Antisheddaasistrategian lääkekehittelyn vaihe 2016
- Aortta aneurysma . Suomennos.
- Aortta-aneurysma
- APOBEC3G
- Apoptoosiresistenssi
- APP
- APP prosessointi
- Aprotiniini
- astasiiniperhe
- astmamuutokset
- Autofagosomibiogeneesi 2013
- Autoimmuuni myokardiitti
- avainentsyymi RAASjärjestelmässä
- avainlinkki luonnollisen ja adaptiivisen immuniteetin välillä
- Aviojen valkea aines
- Bakteeriproteinaasit ja ihmisen MMP
- BDKRB1.
- BDKRB2
- betakaroteeni
- BM-40
- Bradykiniinireseptori B1
- Bradykiniinireseptori B2
- BRC5 geeniperhe
- BSG
- C3-C5
- Ca mammae c. metast.
- CALLA
- CAM
- CD10
- CD135
- CD147
- CD156B
- CD44
- Cecropin
- Celecoxib( COX-2 estäjä)
- CF
- cGAS-c-GAMP-STING signaalitie
- CMT2T
- COPD
- COPD (KOL)
- COPD(KOL)
- cornean toistuva erosio
- COVID-19 ja ADAMTS13 interaktiosta
- Covid-19 taudin vakavuusasteet ja ADAMTS-13 aktiviteetin alenema
- CPEB1(15q25.2)
- CRC
- Crosslinking
- CSVP
- Cu-metalloproteiinit
- Cys array domain
- Deathstalker
- dementiadiagnostiikka
- Dendriittisolujen kehitys
- Dendroaspis angusticeps
- dendroaspis polylepsis
- Dengue
- Dengue ja MMP-inhibiittori
- Diabetes
- Diabetes Egyptin tavallisin tauti. Kansanlääkkevaikutuksesta
- Disintegriini
- disintegriini ja MMP
- disintegriinin ja MMP
- DLG4
- Doxysykliinin MMPi vaikutus
- dsDNA sensori
- Dynaaminen luu ja MMP
- E-vitamiini
- ebola
- Ebola gp vaimennussäätää tärkeitä pintamolekyylejä
- Ebolan strategia; kysteiiniproteaasi-inhibiittori
- EBOV
- EBOV shed GP
- EBOV GP
- EC
- EC 3.4.24.-
- ECM
- ECM and Ebola
- ECM ja MMP proteiinit verkostona
- ECM kypsyminen
- Efriini-A3
- Efriini-A5
- EIPA
- ELA2 (19p13.3)
- elastaasi
- Elastaasi ja aortta-aneurysma
- Ellen Hanssonin väitöskirja sta
- Ellen Hanssonin väitöskirjasta
- Emfyseema
- EMMPRin
- EMT
- EMT-TF
- endometrioosi
- endoteelisolu
- Enterosyytti. Suolistohaavan paraneminen
- ER ja MMP-1
- ERK1/2
- erythroid promoting activity
- esim serralysiinit
- Euroopan tavalliset kyyt ja niiden puremat (2021)
- extrasellulaarinen matrix
- extrasellulaaristen MMPs indusoija
- FAP
- Fav-Afrique
- Fibrinolyysi
- Fibronektiini
- FIH ja Mint3 ja MT1-MMP rekrytoituvat legionellaa sisältäviin vakuoleihin (LCV)
- Flt
- Flt-3 L
- Flt3
- Flt3 estäjä
- Flt3 geeni
- Flt3L MMP
- Fluorokinoloneista
- FN
- Furiini
- FURIINI ja EBOV GP-prosessointi
- Fytiini
- G12perheen proteiinit
- Geeni CD151
- Geeni CD44
- Geeni FUR 15q26.1
- geenin sijainti
- gelatinaasi
- Gelatinaasi-inhibiittori thiirane
- H2O2
- Halofuginoni
- hematopoieettisen solun säätely
- Hemopexiinitoistot
- Hemopxeiinin kaltainen superperhe
- Hepatoma
- HIF1
- HIFs ja rintasyöpä
- HMP
- HNE
- Hoitamaton Keliakia
- Horst Ibelgaufts 1995
- Huggormsbett
- human collagenase inhibitor
- hyaluronaanireseptori
- Hypertensio
- Hypoksian indusoima tekijä 1
- IBD
- Influenssavirusenkefalopatia
- Integriinit
- Invasiivisuus
- IPF
- IRF5
- ISBT 023 Indian veriryhmä
- ISBT 024
- ISBT 025
- isäntäsolun katepsiini B
- iTTP ja hTTP.
- K2 vitamiini
- kallikreiini-kiniinisysteemi ( MMP-3 aktivaatio)
- Kallikreiinigeenit ja reseptorit
- katepsiini L
- katepsiini-B
- katepsiini-inhibiittori
- Katepsiinit
- Keltainen skorpioni
- Keramidisyntaasi
- Kertausta MMP asiasta
- keuhkoahtauma
- keuhkofibroosi
- Keuhkokarsinooma
- Keuhkonsiirto ja bronchiolitis obliterans ja MMP-9 Neutrofiilielastaasi
- Keuhkonsiirto ja bronchiolitis obliterans 20 artikkelia
- Keuhkosyöpä
- keuhkosyöpä ja CPEB4
- keuhkovaurio
- Kiniinireseptorit B1 ja B2
- Kiniinirreseptori B2.
- Koagulaatiosysteemi ja plasminerginen systeemi
- kollagenaasi
- Kontrolloimaton ECM proteolyysi
- Kr. 9q34
- Kupari
- Kupari ja rintasyöpä
- Kutaani syst. skleroosi ja MMP-kaskadi
- Kysteiiniproteaasit ja niiden inhibiittorit
- Kyyn hemorhaginen metalloproteinaasi HMP
- Kyyn myrkyn toiseksi suurin entsyymiryhmä SVTLEs
- Kyyn pureman hoito
- Kyynpurema
- Kyynpuremasta
- käyttöindikaation tarkistusta
- Käärmeen myrkyssä voi olla maan tomusta niitä radioaktiivisiakin ainita
- Käärmeenmyrkky
- Käärmeenmyrkyn hyaluronidaasit SVHYA vertailussa. SVAPs.
- Käärmeenmyrkyn vasta-aineiden tärkeys
- Käärmeenpureman vaaroista (Dödliga ormbett) Käärmeseerumin valmistuksesta
- Käärmeenpuremien yleisyys
- Lapsen kyynpurematapaus
- Lisätietoa matrixmetalloproteinaasesita
- liukoinrn SEMA4D
- LOX entsyymi
- LPS ja sydämen dysfunktio
- Lubricin
- luuytimen seriiniproteaasi
- Lymfoma
- Lysyylioksidaasi
- Lyyn myrkky
- M Erlandssonin väitöskirja nivelreumasta
- M13 perhe
- Major Sheddases ADAM10 ja ADAm17
- Makrofagi
- Makrofagi sekretomi
- Makrofagielastaasi
- Maksakirroosin parantaminen
- maksametastaasi
- maligniteetti
- mamban myrkystä
- Mamban puremasta Dendroapsis
- Marimastat
- Matriksin metalloproteinaasi MMP-8 ja kudosvälitilan proteaasi-inhibiittori TIMP-1
- Matrilysiinidomeeni
- matrixmetalloproteinaasien kudosestäjiä
- MDC-perhe
- MDM2
- medullasiini
- Mepriinit
- Meprin beta
- MEROPS database
- mestastaasi
- metargidin
- metastasoituminen
- METH1
- metsinkiini superperhe
- Metzincin superfamily
- METZINCIN superperhe
- Metzinkiiniperheen alajakoa
- Metzinkiinisuperperhe
- Metzinkiinit ja seitsemän alaryhmää
- Michael Jonssinin väitöskirja
- Michael Jonssonin väitöskirja
- miR-29
- Miten legionella nitistää Syntaxiini17 proteiinin ja samalla kumoaa fagolysosomitietä
- MME(3q25.2) Beprilysiini
- MMP
- MMP AND autophagosome
- MMP inhibiittoreita 20 000 uutta
- MMP interaktio
- MMP ja demyelinisoiva tauti
- MMP ja Lymen neuroborrelioosi
- MMP ja TIMP perheet genomissa
- MMP kaskadi
- MMP kirjosta
- MMP luettelo ja substaatit
- MMP osuus Abeeta4 biogeneesissä.
- MMP ovat sinkistä riippuvia endopeptidaaseja
- MMP perheen biologinen rooli ja kriittinen tasapaino
- MMP rakennekuva
- MMP rooli gliomassa. Onko vastavaikuttajia?
- MMP- kaskadi iskemisessä halvauksessa
- MMP-1
- MMP-11 ja rintasyöpä
- MMP-12
- MMP-12 inhibittori
- MMP-12( gelatinaasi A)
- MMP-13 (Kr.11q22.2)
- MMP-15
- MMP-15 (MT-MMP-2)
- MMP-19
- MMP-2
- MMP-2 (Gelatinaasi-A)- inhibiittoreista
- MMP-2 estäjä
- MMP-2. MMP-9
- MMP-28
- MMP-28 (17q21.1) epilysiini
- MMP-3
- MMP-3 ja ADAMTS-5
- MMP-3 ja osteoartriitti
- MMP-3 pilkkoo A2AP:tä
- MMP-7
- MMP-8
- MMP-9
- MMP-9 inhibitio
- MMP-9 suppressio
- MMP-9 inhibiittori minosykliinihydrokloridi
- MMP-9 inhibitio
- MMP-9 ja melatoniini
- MMP-ja MT-MMP-substraateista ja inhibiittoreista
- MMP-järjestelmä keuhkofibroosissa
- MMP-kirjo ja Ca Mammae riski
- MMP-perhe
- MMP1 (11q22.3)
- MMP2
- MMP8-fuusioproteiini
- MMP9
- MMPI
- MMPs
- MMPs in Ca mammae
- MMPs Lymen neuroborrelioosissa
- MMPs reseptori CD44
- Monosyytti
- Monosyytti ja MMP
- Morbilli ja MMP
- MT-MMP
- MT-MMP proteiiniperheestä kalvoon ankkuroituja 6
- MT.MMP
- MT1-MMP
- MT1-MMP substraatti
- MT1-MMP kirjot primäärisyövässä ja niiten ihometastaasissa
- MTs
- MUC-1
- Musiini 1 MUC1
- N-cadheriini
- Navigate
- NCAM
- NEP
- Neuroligiini-1
- Neutrofiilielastaas
- neutrofiilielastaasi
- NHE-I
- Nikamavälilevydegeneraatiomalli
- Nikotiini. LPS
- NISBD
- NISBD1
- nivelneste
- Nivelreuma
- Nivelreuman tapahtumat nivelrustossa ja luussa . Mats Dehlinin väitöskirja
- nivelruston sorvaus
- normaali sAPP
- NOTCH
- Notcsignaloinnin estäjä
- NSCLC
- olmesartan
- Onkolyyttinen tuhkarokkovirus
- organisaatio
- osteoblasti
- Osteonektiini
- Oxdordlista
- p53
- pahanlaatuinen tauti
- PAI-1:ta . uPA:ta
- Periostat
- Perisyytti
- PGE(2=
- Pinttynyt maksakirroosi
- Plasmiini(MMP-3 kaskadi
- Plasmin
- Plasminogeeni
- Plasminogeeni-plasmiini ja syöpä
- Plasminogeeni-plasmiini- peräinen ANGIOSTATIINI
- Pohdittavaksi glu-css antiporter glioomassa
- Pravastatiinin
- PRCGVPDS-gluthatiolation
- Pre-angiotensinogeeni tarvitsee reniinin.
- PRG4 1q25-q31
- PRMT
- pro-MMP7
- prolyl-tRNA syntaasin estäjä
- proproteiinikonvertaasi
- proteaasi-antiproteaasiepätasapaino keuhkofibroosissa
- proteiiniarginiini metyylitransferaasi
- proteoglykaani
- proteomitekniikka
- Proteus ja diabetes.
- Prtoeiini C aPC activate gelatinase A
- Pseudpmpnas
- PubMed haku MMP perheen uutisista
- Punkin syljen merkitys verirqavinnon hankinnassa
- Punkkien syljen metalloproteinaasit
- RA
- Reseveratroli ja MMP-13suppressio?
- resveratroli
- Rintasyöpä
- rusto
- S100A4 metastasiini
- Samuel Bagster 1875
- SARA
- SCA43. membraanimetalloendopeptidaasi
- SEMA3C
- SEMA3C semaforiini-3C
- SEMA4D
- Semaforiini
- seriiniproteaasi NE
- Serralysiiniperhe Virulenssiproteiineja
- Serralysiinistä vuonna 1999
- Serralysin 2020
- Sheddase
- signalointitiet
- Sinkkiproteiini
- SIRT-1
- SLPI proteaasi-inhibiittori
- SMAD
- SMURF
- SNIP
- Solu Adheesio Molekyyli
- Sorafenib (VEGFR estäjä)
- Sorvareiden ja Kähyjen Klaani MA
- SPARC
- STAT3
- STAT3signaloinnin inhibitio syöpäterapiassa
- Stimulator of Interferon Genes
- STING
- stromelysiini
- stromelysiini-1
- Stromelysiinit 1
- suhde MMP kaskadiin päin
- sulfatidi
- Sunitinib
- Suomalainen väiotöskirja
- Suomalaisia artikkeleita
- suonituppi
- surviviini
- Surviviini inhibitio
- Surviviini nuclear shuttle protein
- SVD
- SVMP
- Syndekaani-4
- sytokiiniverkosto
- syöpäsolun migroituminen
- T1DM ja MMPs
- TACE
- TACE/ADAM17
- TAFI
- tetraspaniini
- Tetrasykliinijohdannainen kollagenaasi-inhibiittorina
- TGFbeta/SMAD signalointi
- TIMP
- TIMP luettelo ja tehtävät
- TIMP- 1 väitöskirjoissa
- TIMP-1
- TIMP-1 metabolisessa oireyhtymssä
- TIMP-1 ei ole vain MMP-inhibiittori
- TIMP-1 geeni X kromosomissa
- TIMP-1 geeni.
- TIMP-1 ja glioblastooma
- TIMP-2
- TIMP-3
- TIMP-4/CD63 ja gliooma. Astrosyyttinen fenotyyppi
- TIMP1 geeni
- TIMP3 ja SIRTUIINI
- TIMPs
- TNFalfa
- TNFalfa konvertaasi
- TOPA
- tPA
- tPA /plasminogeeni axisd
- Treenaus ja obesitas-aspekti
- Trombomoduliini ja MMP
- TTP
- Tulehdus ja oksidatiivinen strtessi aktivoi proMMP
- Tupakansavu asetyloi TIMP1. SIRT1 deasetyloi TIMP1. TIMP/MMP9 tasapaino
- Tutkimuksia MMP klusterista keuhkofibroosissa (IPF)
- Tutukimustyö
- UC
- uPA
- uPA inhibiittori
- uPAR
- urokinaasi
- UTE-1
- Uusinta Adamts proteiiniperheestä.
- Uutta käsitystä ADAM metalloproteinaasien verkkovaikutustavasta
- uUusi asenne fluorokinoloneihin 2019
- VaD
- vaiutaa angiostatiinin syntyä
- Valtimoseinämän jäykkyys
- Veriaivoeste
- veriryhmä OK
- Veriryhmä Raph
- Vipera Berus myrkkyjen tutkimus
- vitronektin
- Voiko MMP-kaskadia rauhoittaa
- VWF
- vWF pilkkova proteaasi
- Välilevy
- Wikipedian yleiskatsaus MMPs 2017
- ZapA metalloproteaasi on IgA.ta hajoittava
- ZEB
- Zinkiinit
- ZnMc_MMP
torsdag 17 april 2014
Elastaasi, ihmisen elastaasigeenit. MMP-12 on makrofagielastaasi.
Päivitystä 17.4. 2014.
WIKIPEDIA kertoo, että ihmisellä on kahdeksan elastaasigeeniä. ( Tämä artikkeli on keskeneräinen)
Mikä näistä olisi kyseessä aortan aneurysmissa?
( Ainakin MMP-9 erään lähteen mukaan. http://www.chisholm.northwestern.edu/chisholm/MMP9.htm )
Wikipedialähde maintisee että myös MMP-12 osallistuu aneurysman muodostukseen. (MMP12 may play a role in aneurysm formation[4] and studies in mice and humans suggest a role in the development of emphysema).
http://en.wikipedia.org/wiki/Neutrophil_elastase
There exist eight human genes for elastase:
WIKIPEDIA kertoo, että ihmisellä on kahdeksan elastaasigeeniä. ( Tämä artikkeli on keskeneräinen)
Mikä näistä olisi kyseessä aortan aneurysmissa?
( Ainakin MMP-9 erään lähteen mukaan. http://www.chisholm.northwestern.edu/chisholm/MMP9.htm )
Wikipedialähde maintisee että myös MMP-12 osallistuu aneurysman muodostukseen. (MMP12 may play a role in aneurysm formation[4] and studies in mice and humans suggest a role in the development of emphysema).
http://en.wikipedia.org/wiki/Neutrophil_elastase
Interactions Neutrophil elastase has been shown to interact with Alpha 2-antiplasmin.
There exist eight human genes for elastase:
Family | Gene symbol | Protein name | EC number | ||
---|---|---|---|---|---|
Approved | Previous | Approved | Previous | ||
chymotrypsin- like | CELA1 | ELA1 | chymotrypsin-like elastase family, member 1 | elastase 1, pancreatic | EC 3.4.21.36 |
CELA2A | ELA2A | chymotrypsin-like elastase family, member 2A | elastase 2A, pancreatic | EC 3.4.21.71 | |
CELA2B | ELA2B | chymotrypsin-like elastase family, member 2B | elastase 2B, pancreatic | EC 3.4.21.71 | |
CELA3A | ELA3A | chymotrypsin-like elastase family, member 3A | elastase 3A, pancreatic | EC 3.4.21.70 | |
CELA3B | ELA3B | chymotrypsin-like elastase family, member 3B | elastase 3B, pancreatic | EC 3.4.21.70 | |
chymotrypsin | CTRC | ELA4 | chymotrypsin C (caldecrin) | elastase 4 | EC 3.4.21.2 |
neutrophil | ELANE | ELA2 | neutrophil elastase | elastase 2 | EC 3.4.21.37 |
macrophage | MMP12 | HME | macrophage metalloelastase | macrophage elastase | EC 3.4.24.65 |
onsdag 16 april 2014
Amiloridi
Amiloridi
3,5-diamino-6-chloro-N-(diaminomethylene)pyrazine-2-carboxamide
on kaliumia säästävä diureettinen lääke.
Sitä on alettu kokeilla 1967 hypertension hoitoon ja lievässä sydäninsuffisienssissa. (Itsekin olen kirjoittanut tätä lääkettä Moduretic nimisenä, jossa se esiintyy kombinaationa tiatsidiryhmän diureetin kanssa) Amiloridissa on guanidiiniryhmä pyratsiinijohdannaisena.
Amiloridi pystyy suoraan blokeeraamaan epiteliaalisen natriumkanavan (ANaC) ja täten estämään natriumin reabsorption samaan tapaan kuin triamtereeni, tästä seuraa natriumin ja veden menetystä ja kaliumin samanaikaista säästöä.- usein kombinoidaan amiloridi tiatsidiin ( Moduretic) tai furesikseen , loop- diuretikaan
. Joskus voi kehittyä hyperkalemiaa amiloridissta. Riski on suuri jos käytetään ACE -estäjiä tai spironolaktonia samaan aikaan.
Samalla mainitaan ettei tulisi käyttää kaliumpitoisia pöytäsuoloja ( Seltin ym)
Amiloridilla on myös asidoosin kehittämisriskinsä.
Amiloridin eräs vaikutus on cGMP-toimivan kationikanavna estäminen munuaisen ytimen sisemmässä kokoojatiehyessä ( inner medullary collecting duct.)
Sydänvaikutuksenaan amiloridi sekundäärisesti blokeeraa Na+/H+ vaihtajan(NHE-1) Tämä minimoi iskemisten kohtausten reperfuusion aiheuttamia vaurioita.
Päivitys 18.4. 2014.
3,5-diamino-6-chloro-N-(diaminomethylene)pyrazine-2-carboxamide
on kaliumia säästävä diureettinen lääke.
Sitä on alettu kokeilla 1967 hypertension hoitoon ja lievässä sydäninsuffisienssissa. (Itsekin olen kirjoittanut tätä lääkettä Moduretic nimisenä, jossa se esiintyy kombinaationa tiatsidiryhmän diureetin kanssa) Amiloridissa on guanidiiniryhmä pyratsiinijohdannaisena.
Amiloridi pystyy suoraan blokeeraamaan epiteliaalisen natriumkanavan (ANaC) ja täten estämään natriumin reabsorption samaan tapaan kuin triamtereeni, tästä seuraa natriumin ja veden menetystä ja kaliumin samanaikaista säästöä.- usein kombinoidaan amiloridi tiatsidiin ( Moduretic) tai furesikseen , loop- diuretikaan
. Joskus voi kehittyä hyperkalemiaa amiloridissta. Riski on suuri jos käytetään ACE -estäjiä tai spironolaktonia samaan aikaan.
Samalla mainitaan ettei tulisi käyttää kaliumpitoisia pöytäsuoloja ( Seltin ym)
Amiloridilla on myös asidoosin kehittämisriskinsä.
Amiloridin eräs vaikutus on cGMP-toimivan kationikanavna estäminen munuaisen ytimen sisemmässä kokoojatiehyessä ( inner medullary collecting duct.)
Sydänvaikutuksenaan amiloridi sekundäärisesti blokeeraa Na+/H+ vaihtajan(NHE-1) Tämä minimoi iskemisten kohtausten reperfuusion aiheuttamia vaurioita.
Päivitys 18.4. 2014.
Monosyytti ja MMP. Aortta
Haku 16.4. 2014) Lähde:
Samadzadeh KM1, Chun KC1 et al. Monocyte activity is linked with abdominal aortic aneurysm diameter. J Surg Res. 2014 Mar 13. pii: S0022-4804(14)00252-2. doi: 10.1016/j.jss.2014.03.019. [Epub ahead of print]
Tiivistelmä( suomennosta) Abstract
Taustaa:
- Systeeminen tulehdus ja lisääntynyt matrixmetalloproteinaasien (MMP) määrä aiheuttaa elastiinin, aortalle tyypillisen proteiinirakenteen, hajoamista, mistä seuraa vatsa-alueen aortan aneurysman laajenemista. Usea prospektiivinen tutkimus raportoi, että statiinihoidolla voidaan vähentää vatsa-alueen valtavaltimon aneurysmien laajenemisia anti-inflammatorisen vaikutuksen välityksellä. Tutkijat ovat tehneet oletuksensa, että monosyyttien aktiviisuudella on olennaista osuutta tässä vatsa-alueen valtavaltimon aneurysman muodostumisessa ja sen takia tässä tutkimuksessa selvitetään potilaan perifeerisen veren monosyyttien soluadhesiivisuutta, migraatiota suonen sisäkalvon endoteelin läpi ja matrixmetalloproteinaasientsyymien pitoisuuksia vatsa-alueen aorta-aneurysmaa potevilla ja kontrollihenkilöillä, joilla ei ole aneurysmaa tässä osassa valtavaltimoaan. .
BACKGROUND: Systemic inflammation and increased matrix metalloproteinase (MMP) cause elastin degradation leading to abdominal aortic aneurysm (AAA) expansion. Several prospective studies report that statin therapy can reduce AAA expansion through anti-inflammation. We hypothesize that monocyte activity plays a pivotal role in this AAA development and this study examines patient peripheral blood monocyte cell adhesion, transendothelial migration, and MMP concentrations between AAA and non-AAA patients.
Tutkimusaineisto ja menetelmät. Perifeerisen veren näytteitä ja verestä eristettyjä monosyyttejä viideltätoista terveeltä kontrollilta ja 13 aneurysmapotilaalta. Mitattiin monosyyttein adheesio ja transmigraatiokyky sekä permeabiliteetti. Luminexmenetelmällä määritettiin MMP-9 ( matrixmetalloproteiinin) ja TIMP- 4 ( metalloproteinaasin kudosestäjän) pitoisuudet soluviljelmän supernatantista ja potilaan seerumista.
MATERIALS AND METHODS: Peripheral blood was collected and monocytes isolated from control (n = 15) and AAA (n = 13) patients. Monocyte adhesion, transmigration, and permeability assays were assessed. Luminex assays determined MMP-9 and tissue inhibitor of metalloproteinase-4 (TIMP-4) concentrations from cell culture supernatant and patient serum.
Minkälaisia tulokset olivat ? Abdominaalialueen aorttaa potevilla oli monosyyttien adhesoituminen( takertuminen) suonen sisäpintaan (endoteeliin) kohonnutta kontrollihenkilöihin verraten. Monosyyttien kulkeminen kalvon läpio oli myös lisääntynyttä aneyrysmaisilla potilailla. Takertuvien ja transmigroituvien monosyyttien suurempi lukumäärä oli suoraan verrannollinen vatsa-alueen aortan aneurysman läpimittaan.Merkitsevästi korkempi MMP_9 metalloproteinaasin pitoisuus havaittiin aneurysmaisten joukossa verrattuna kontrolleihin. Aneurysmaisten estäjäentsyymien TIMP-4 pitoisuudet vastaavasti olivat myös merkitsevästi matalammat kuin kontrolleilla. Solujen samanaikaisviljelmien supernatanteista mitatut MMP ja TIMP-pitoisuudet olivat korkeammat kuin pelkkien monosyyttin viljelmistä mitatut pitoisuudet.
RESULTS: AAA patient monocytes showed increased adhesion to the endothelium relative fluorescence units (RFU, 0.33 ± 0.17) versus controls (RFU, 0.13 ± 0.04; P = 0.005). Monocyte transmigration was also increased in AAA patients (RFU, 0.33 ± 0.11) compared with controls (RFU, 0.25 ± 0.04, P = 0.01). Greater numbers of adhesive (R2 = 0.66) and transmigratory (R2 = 0.86) monocytes were directly proportional to the AAA diameter. Significantly higher serum levels of MMP-9 (2149.14 ± 947 pg/mL) were found in AAA patients compared with controls (1189.2 ± 293; P = 0.01). TIMP-4 concentrations were significantly lower in AAA patients (826.7 ± 100 pg/mL) compared with controls (1233 ± 222 pg/mL; P = 0.02). Cell culture supernatant concentrations of MMP and TIMP from cocultures were higher than monocyte-only cultures.
Mitä tuli johtopäätökseksi?
Vatsa-alueen aortan aneurysmaa potevilla henkilöillä monosyytit olivat takertuvaisempia ja ne siirtyivät helpommin suonen endoteelin läpi koeputkessa tarkastellen ja siitä johtui kohonneita MMP-9 pitoisuuksia ja (- loogisesti tähän sopien- ) alentuneita TIMP-4 pitoisuuksia. Jos pystyttäisiin moduloimaan monosyyttien aktiivisuutta, voitaisiin löytää uusia lääketieteellisiä terapiamahdollisuuksia, joilla saataisiin vähennettyä vatsa-alueen aortan aneurysman laajenemista.
CONCLUSIONS: Monocytes from AAA patients have greater adhesion and transmigration through the endothelium in vitro, leading to elevated MMP-9 levels and the appropriate decrease in TIMP-4 levels. The ability to modulate monocyte activity may lead to novel medical therapies to decrease AAA expansion.
Copyright © 2014 Elsevier Inc. All rights reserved.KEYWORDS:
Abdominal aortic aneurysm, Adhesion, Inflammation, Matrix metalloproteinase, Monocytes, TransmigrationHepatoman metastasoituminen .Solukalvoreseptori CD147
LÄHDE (2006) :
LÄHDE: YU Xiao-Ling et al. The glycosylation characteristic of hepatoma-associated antigen HAbl8G/CD147 in human hepatoma cells
Eräs hyvin glykosyloitunut transmembraaninen proteiini (HAbl8G/CD147 ) kuuluu immunoglobuliinien superperheeseen. Tutkijaryhmä oli aiemmin osoittanut, että tämän antigeenin ylimääräinen esiintymä lisäsi ihmisen maksasyöpäsolujen metastaattista potentiaalia.
Tässä tutkimuksessa keskityttiin selvittämään ihmisen maksasoluissa tämän Ig-proteiinin glykosyloitumisen piirteet.
Tätä Ig molekyyliä eristettiin
ihmisen maksasoluista ja sitä johdettiin ihmisen fibroblastisoluihin, joissa
se indusoi matrixmetalloproteinaaseja (MMPs).
Fibroblastin erittämät MMP-entsyymit tutkittiin gelatiinisymografialla.
Hepatomasoluista
löydettiin kaksi päämuotoa tätä Ig:tä.
Selvitettiin, mikä vaikutti eri
molekyylikoot, olisiko se glykosylaatio?
Tässä tutkimuksessa käytettiin
tekniikkana deglykosylaatiota, jossa tunicamysiini esti N-glykosylaation tai sitten käytettiin endoglykosidaaseja. Molemmillä metodeilla löydettiin ydinjakso, joka oli kDa 27 kokoa.
Endoglykosidaaseilla selvitettiin,että oligosakkaridiketjutyypit olivat erilaisia ja täten eri endoglykosidaaseille herkkiä.
Johtopäätöksenä oli, että ao. maksasyöpäsolun immunoglobuliini omasi ihmisen fibroblasteihin bioaktiivisuutta stimuloiden niitä tuottamaan kohonneita määriä matrixmetalloproteinaaseja (MMPs).
Lisäksi todettiin että ihmisen maksasyöpäsoluissa on kahta erilaista antigeenia (HAb 18G/CD147), immunoglobuliinimuotoa, joiden ydinosa oli samanlainen, mutta glykosylaatioitten asteet ja tyypit erosivat.
Avainsanat.
HAb18G/CD147; Glycosylation ; Hepatoma cell ; Endoglycosidase ; Matrix metalloproteinase
LISÄTIETOA CD147:
Tämä välittää monilääkeresistenssiä syövässä.
http://www.ncbi.nlm.nih.gov/pubmed/23623923
Havaittujen antigeenien ja reseptorien hahmottamisesta kartta:
http://www.med.unibs.it/~airc/sandra/fig_1-4.gif
LISÄTIETOA CD147:
Tämä välittää monilääkeresistenssiä syövässä.
http://www.ncbi.nlm.nih.gov/pubmed/23623923
Havaittujen antigeenien ja reseptorien hahmottamisesta kartta:
http://www.med.unibs.it/~airc/sandra/fig_1-4.gif
lördag 12 april 2014
MMP- kaskadi iskemisessä halvauksessa
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615191/
Although tPA administered within 4.5
h or less of symptom onset improves the functional outcome in patients (Miller et al., 2012; Wardlaw et al., 2012),
it induces a 10-fold increase of symptomatic intracranial hemorrhage
(ICH) (National Institute of Neurological Disorders and Stroke rt-PA
Stroke Study Group, 1995).
Furthermore, delayed reperfusion with tPA beyond 3
h is associated with an increased risk of hemorrhagic transformation (HT) with enhanced brain injury (Clark et al., 1999).
Moreover, tPA may cause injury to the BBB by activating matrix metalloproteinases (MMPs) (Wang et al., 2003).
Thus, the therapeutic application of tPA is limited to specific clinical settings (National Institute of Neurological Disorders and Stroke t-PA Stroke Study Group, 1997). There is a pressing need to identify new combination therapies that can prevent tPA-associated ICH as well as extend the time window for thrombolysis without reducing its benefits.
The extent of BBB disruption is associated with the type, severity, and duration of ischemic insults.
The molecular mechanisms underlying BBB opening are not fully understood, although several MMPs are believed to regulate BBB permeability and function during ischemic stroke (Mun-Bryce and Rosenberg, 1998).
JATKUU (Suomennettava myöh,)
Frontiers Media SA
Matrix Metalloproteinases and Blood-Brain Barrier Disruption in Acute Ischemic Stroke
Shaheen E. Lakhan, Annette Kirchgessner, [...], and Aidan Leonard
Abstract
Ischemic
stroke continues to be one of the most challenging diseases in
translational neurology. Tissue plasminogen activator (tPA) remains the
only approved treatment for acute ischemic stroke, but its use is
limited to the first hours after stroke onset due to an increased risk
of hemorrhagic transformation over time resulting in enhanced brain
injury.
In this review we discuss the role of matrix metalloproteinases
(MMPs) in blood-brain barrier (BBB) disruption as a consequence of
ischemic stroke.
MMP-9 in particular appears to play an important role
in tPA-associated hemorrhagic complications. Reactive oxygen species (ROS) can
enhance the effects of tPA on MMP activation through the loss of
caveolin-1 (cav-1), a protein encoded in the cav-1 gene that serves as a
critical determinant of BBB permeability.
This review provides an
overview of MMPs’ role in BBB breakdown during acute ischemic stroke.
The possible role of MMPs in combination treatment of acute ischemic
stroke is also examined.
Keywords: '
MMPs matrix metalloproteinases,
BBB blood-brain barrier,
stroke,
caveolin-1,
ROS reactive oxygen species
Introduction
Stroke is the third leading cause of death in industrialized countries (Lo et al., 2003) and the most frequent cause of permanent disability in adults worldwide (Donnan et al., 2008).
Acute ischemic stroke is the most common form of stroke and results
from sudden blood vessel occlusion by a thrombus or embolism, resulting
in an almost immediate loss of oxygen and glucose to the cerebral
tissue. Although different mechanisms are involved in the pathogenesis
of stroke, increasing evidence shows that ischemic injury and
inflammation account for its pathogenic progression (Muir et al., 2007).
Cerebral ischemia initiates cascades of pathological events, including
vasogenic edema, disruption of the blood-brain barrier (BBB),
intracranial hemorrhage (ICH), astroglial activation, and neuronal
death. This ultimately causes irreversible neuronal injury in the
ischemic core within minutes of the onset (Dimagl et al., 1999).
Despite
advances in understanding the pathophysiology of cerebral ischemia,
treatment options for acute ischemic stroke remain very limited (Donnan
et al., 2008).
Intravenous recombinant tissue plasminogen activator (tPA) remains the
only FDA-approved thrombolytic therapy for reestablishing blood flow and
salvaging brain tissue after acute ischemic stroke (Lijnen and Collen, 1987; National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group, 1995). By degrading fibrin clots, tPA acts as a thrombolytic agent through the activation of plasminogen to plasmin (Lijnen and Collen, 1987).Although tPA administered within 4.5
Furthermore, delayed reperfusion with tPA beyond 3
Moreover, tPA may cause injury to the BBB by activating matrix metalloproteinases (MMPs) (Wang et al., 2003).
Thus, the therapeutic application of tPA is limited to specific clinical settings (National Institute of Neurological Disorders and Stroke t-PA Stroke Study Group, 1997). There is a pressing need to identify new combination therapies that can prevent tPA-associated ICH as well as extend the time window for thrombolysis without reducing its benefits.
Recent
studies suggest that tPA adverse effects are mediated through MMPs, a
family of >20 zinc-dependent enzymes that increase BBB permeability
by degrading components of the extracellular matrix (ECM) and tight
junctions (TJ) in endothelial cells (ECs) (Lapchak et al., 2000; Lijnen, 2001; Briasoulis et al., 2012).
Increased expression and activation of MMPs plays a pivotal role in
thrombolysis-mediated BBB leakage and edema, resulting in intracranial
hemorrhage (Lapchak et al., 2000; Sumii and Lo, 2002). Reactive oxygen species (ROS) and its signaling pathways can enhance the effects of tPA on MMP activation (Harada et al., 2012).
- In this review we provide an overview of the role of MMPs in BBB breakdown during acute ischemic stroke and the potential for MMP inhibition in the treatment of stroke.
Structural Components of the BBB/Neurovascular Unit
The
BBB is a dynamic interface between the peripheral circulation and the
CNS. It controls the influx and efflux of biological substances needed
for the brain metabolic processes, as well as for neuronal function.
Thus, the functional and structural integrity of the BBB is vital in
maintaining brain homeostasis.
The structure of the BBB has been discussed in reviews elsewhere (Sandoval and Witt, 2008; Abbott et al., 2010).
Briefly, the anatomical substrate of the BBB is the cerebral
microvascular endothelium, which together with the closely associated
astrocytes, pericytes, neurons, and the ECM, constitute a “neurovascular
unit” that is essential for the health and function of the CNS (del
Zoppo, 2009).
Cell–cell interactions in the neurovascular unit form the basis for
brain function. Dysfunctional signaling in the neurovascular unit
underlies the basis for disease. Alterations in microvessel integrity
may have other effects within the neurovascular unit that affect
neuronal function. The mechanisms of neurovascular unit response to
stroke are not fully understood. However, any fully effective stroke
therapy must include both prevention of cell death as well as repair of
integrated neurovascular function.
The microcapillary endothelium is composed of TJs and follow a
biphasic time course. Morphologically, BBB opening correlates with a
redistribution of the TJ and AJ proteins from the plasma membrane to the
cytoplasm as well as reorganization of the endothelial actin
cytoskeleton.The extent of BBB disruption is associated with the type, severity, and duration of ischemic insults.
The molecular mechanisms underlying BBB opening are not fully understood, although several MMPs are believed to regulate BBB permeability and function during ischemic stroke (Mun-Bryce and Rosenberg, 1998).
The
expression of MMPs in the adult brain is very low to undetectable, but
clinical and experimental studies have shown that several MMPs are
upregulated and activated after ischemic stroke (Lee et al., 2007; McColl et al., 2008).
MMPs disrupt the BBB by degrading the TJ proteins and basal lamina
proteins, thereby leading to BBB leakage, leukocyte infiltration, brain
edema, and hemorrhage.
Evidence suggests that MMP-2 and MMP-9 play
different roles in BBB disruption during ischemic stroke.
- MMP-2 KO( knock out) does not provide neuroprotection in mouse models of permanent and transient MCAO (Asahi et al., 2001b). Consistently, in vitro data show that MMP-2 is not toxic to neurons in hippocampal slice preparations (Cunningham, 2005).
- In contrast, MMP-9 KO (knock out) provides strong neuroprotection in the same animal models, and in vitro MMP-9 is toxic to neurons in hippocampal slice preparations and in cultured primary cortical neurons (Asahi et al., 2000b).
In support of these data, a clinical study (Lucivero et al., 2007) reported an increase in plasma MMP-2 only in patients with lacunar (mild) stroke early (within 12
h)
and this was related to better outcome. In contrast, an increase in
plasma MMP-9 was observed later (at day 7) and related to more severe
stroke.
Matrix metalloproteinases are
thought to have beneficial roles in stroke recovery.
Shortly after an
ischemic insult, a cascade of events is initiated in an attempt to
repair the damage, a process similar to that found in wound healing
(National Institute of Neurological Disorders and Stroke rt-PA Stroke
Study Group, 1995; Wardlaw et al., 2012).
Following injury, blood vessels are dependent on the plasminogen
activator system and
on MMPs for their regeneration (Suzuki et al., 2009).
It may be that a balanced level of MMP activity is important for
vascular remodeling after ischemic brain injury (Yang and Rosenberg, 2011).
Therefore, extended inhibition of MMPs, especially through the use of
broad-spectrum inhibitors, might prove deleterious (National Institute
of Neurological Disorders and Stroke rt-PA Stroke Study Group, 1995; Donnan et al., 2008).
MMP-2 (gelatinase A)
Matrix
metalloproteinase-2 is one of the two described human gelatinases in
the MMP family, named for their ability to proteolytically degrade
gelatine (denatured collagen) (see Table Table11
for a list of MMPs and their putative roles in acute ischemic stroke).
MMP-2 is ubiquitously expressed as a 72-kDa proenzyme and subject to
extensive glycosylation (Klein and Bischoff, 2011).
(KUVA)
h
after reperfusion and increased activation of MMP-2 correlated with the
early opening of the BBB and the degradation of the TJ proteins
claudin-5 and occludin in both cerebral hemispheres (Rosenberg et al., 1992; Yang et al., 2007). Experimental data clearly demonstrated an increase in MMP-2 at 3
h,
along with increased expression of the MMP-2 activators, MT1-MMP and
furin.
A synthetic MMP inhibitor (BB-1101) blocked the increase in brain MMP-2 levels, but it did not have any effect on stroke lesion size at 48
h after MCAO and had significant adverse effects on neurologic function in rats at 3 and 4
weeks after MCAO (Rosenberg et al., 1992, 1998; Yang et al., 2007).
In contrast, direct injection of MMP-2 into the rat brain resulted in the disruption of the BBB with subsequent hemorrhage, and this effect was inhibited by co-administration of TIMP-2 (Rosenberg et al., 1992). Thus, the early degradation of TJ proteins seems to be associated with a marked increase in MMP-2 in the early phase of ischemia.
(KUVA)
- 3 tuntia halvauksesta NNP-2:n aiheuttama BBB läpivuoto
A synthetic MMP inhibitor (BB-1101) blocked the increase in brain MMP-2 levels, but it did not have any effect on stroke lesion size at 48
In contrast, direct injection of MMP-2 into the rat brain resulted in the disruption of the BBB with subsequent hemorrhage, and this effect was inhibited by co-administration of TIMP-2 (Rosenberg et al., 1992). Thus, the early degradation of TJ proteins seems to be associated with a marked increase in MMP-2 in the early phase of ischemia.
Suofu et al. (2012)
recently assessed the effects of MMP-2 KO, MMP-9 KO, and MMP-2/9 double
KO (dKO) in protecting against mechanical reperfusion-induced HT and
other brain injuries after the early stages of cerebral ischemia in mice
of the same genetic background.
Both MMP-2 and MMP-9 specifically
attack the type IV collagen, laminin, and fibronectin, which are the
major components of the basal lamina around the cerebral blood vessels.
MCAO was performed and reperfusion was started at 1 or 1.5
h after onset of MCAO. Mice were sacrificed 8
h
later. Both pro- and active-MMP-2 and MMP-9 levels were significantly
elevated in the early ischemic brain. After the early stages of ischemia
and reperfusion, the hemorrhagic incidence was reduced in the cortex of
MMP-2 KO mice. The hemorrhagic volume was also significantly decreased
in the cortexes of MMP-2 and/or -9 KO mice. In the basal ganglia, MMP-2
KO and MMP-2/9 dKO mice displayed a remarkable decrease in hemorrhagic
volume, but MMP-9 deletion did not protect against hemorrhage. MMP-2
and/or -9 KO mice displayed significantly decreased infarction volume in
both the cortex and striatum, in addition to improved neurological
function. The results suggested that MMP-2 deficiency as well as MMP-2
and MMP-9 double deficiency were more protective than MMP-9 deficiency
alone against HT after the early stages of ischemia and reperfusion.
MMP-3 (stromelysin-1)
JATKUU (Suomennettava myöh,)
Mitä tPA vaikuttaa MMP- kaskadiin? Yleistä tPA/plasminogeeni-akselista.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1383744/
Lähdeartikkelin lyhennyksiä
Tissue plasminogen activator in central nervous system physiology and pathology
Jerry P. Melchor and Sidney Strickland
Summary
Although
conventionally associated with fibrin clot degradation, recent work has
uncovered new functions for the tissue plasminogen activator
(tPA)/plasminogen cascade in central nervous system physiology and
pathology. This extracellular proteolytic cascade has been shown to have
roles in learning and memory, stress, neuronal degeneration, addiction
and Alzheimer’s disease. The current review considers the different ways
tPA functions in the brain.
PA:
plasminogen activator,
tPA: tissue-type plasminogen activator,
uPA:
urokinase-type plasminogen activator,
PAI-1: plasminogen activator
inhibitor-1,
LRP: low-density lipoprotein receptor-related protein, (tPA clearing receptor)
CNS:
central nervous system,
CPEB: cytoplasmic polyadenylation element
binding,
LTP: long-term potentiation,
LTD: long-term depression,
mRNA:
messenger ribonucleic acid,
BDNF: brain-derived neurotrophic factor,
NMDA: N-methyl-D-aspartate,
RAP: receptor-associated protein,
ECM:
extracellular matrix,
BBB: blood brain barrier,
MMP: matrix
metalloproteinase,
EtOH: ethanol,
ERK: extracellular signal-regulated
kinase,
GAP: growth-associated protein,
CRF: corticotropin-releasing
factor,
MCAO: middle cerebral artery occlusion,
Aβ: beta-amyloid
Sitaatti artikkelista:
Johdannosta (Introduction)
The plasminogen activator (PA)/plasminogen proteolytic cascade is known to be important for thrombolysis (1, 2). There are two mammalian PAs: tissue-type (tPA) and urokinase-type (uPA) (3).
PAs are serine proteases that cleave a specific peptide bond within the zymogen plasminogen to generate the active protease, plasmin, which is capable of degrading numerous substrates
In the vasculature, plasmin efficiently breaks down fibrin clots, aiding in hemostasis and vascular patency. This protease cascade is tightly regulated by the actions of serine protease inhibitors (serpins), of which plasminogen activator inhibitor-1 (PAI-1) and neuroserpin are the major cognate serpins for tPA, while plasmin is inhibited by α2 -antiplasmin (2).
Furthermore, tPA activity can be attenuated by rapid clearance through low-density lipoprotein receptor-related protein (LRP)-mediated endocytosis and augmented by binding annexin-II or to fibrin within a clot (4, 5).
Plasminogen, PAI-1, and neuroserpin are also present in the brain indicating that the components of the tPA/plasminogen cascade are present in the CNS (9, 13–15).
In neurons, the expression of tPA can be under translational control; tPA expression is regulated by the binding of the cytoplasmic polyadenylation element binding (CPEB) protein which leads to the extension of tPA mRNA polyadenylation and a subsequent increase in tPA protein synthesis (16). This regulation of tPA expression allows for a rapid increase in activity in response to specific stimuli (as seen in synaptic plasticity), and the presence of cognate serpins of tPA in the CNS allows for swift and specific inactivation. The localization to axon terminals and the highly regulated axonal release of tPA is consistent with a proteolytic-dependent role for tPA in the CNS in which PA cascade activation alters the extracellular matrix (ECM) and modifies synapses, such as during seizure, kindling, and long-term potentiation (LTP) (6, 17).
While tPA also has been visualized in dendrites, the release of this protein from these structures has yet to be demonstrated (16).
Another action of the tPA/plasminogen system that contributes to LTP generation is cleavage of the pre-cursor form of brain-derived neurotrophic factor (proBDNF) to its mature form (mBDNF) (24). The application of mBDNF, derived from tPA/plasmin cleavage, to hippocampal slices can rescue impaired L-LTP in both tPA-deficient and plasminogen-deficient mice. This work reveals an interaction between the tPA/plasminogen axis and BDNF and suggests a potential impact of this interaction on LTP. These observations suggest further studies to define plasmin/proBDNF binding and identify putative mBDNF receptors for LTP propagation.
The function of tPA in plasticity in vivo
has been scrutinized in mice either deficient for or over-expressing
this protease since Qian and co-workers showed that tPA mRNA was
up-regulated in the rat hippocampus after seizure, kindling, and LTP (6).
Although several studies do not indicate a role for tPA in traditional
hippocampal-based behavioral tests, mice overexpressing tPA in the CNS
show enhanced LTP in hippocampal slices and exhibit improved
hippocampal-dependent spatial memory formation as measured by Morris water maze and homing hole board tests (32). In these studies, overexpression of tPA led to increased synaptic activity in vivo, which is similar to published in vitro
results. Thus, despite a lack of a learning phenotype in tPA-deficient
mice in several learning paradigms, behavioral results from
tPA-overexpressing mice indicate a role for this protease in memory (23, 33).
In
addition to its roles in the hippocampus, amygdala, and cerebellum, the
tPA/plasminogen system is also involved in the recovery of function in
the visual cortex after reverse occlusion. The development of the visual
pathway is dependent on activity and leads to ocular dominance, a
condition in which certain cortical neurons become selectively connected
to one specific eye. Ocular dominance progression can be enhanced by addition of norepinephrine, which leads to increased tPA mRNA (35).
Preventing visual stimulation of an eye leads to monocular deprivation,
a state of diminished cortical response in the closed eye. Reverse
occlusion is the rescue of visual function in the previously deprived
eye by opening this eye and closing the formerly open eye, and this
process occurs by the formation of connections from the lateral
geniculate nucleus of the thalamus to the visual cortex.
Muller and Griesinger have shown the tPA/plasminogen proteolytic cascade is necessary for reverse occlusion, since inhibition of either protease prevents proper formation of thalamocortical connections for visual rescue (36). Other research has extended this finding, indicating that tPA/plasminogen activity allows for reorganization of connections in the visual cortex, again highlighting this proteolytic cascade’s contribution in synaptic plasticity (37). More specifically, two recent reports show that during monocular deprivation, tPA/plasminogen activity helps in structural remodeling by pruning dendritic spines and reorganizing the ECM (38, 39).
Further investigation identified laminin, a component of the ECM, as a substrate of plasmin proteolysis, and laminin cleavage combined with glutamate excitotoxicity results in neuronal degeneration due to anoikis (43–46). Plasmin-cleaved laminin fragments or anti-laminin antibodies infused into the hippocampus of either wild-type or plasminogen-deficient mice disrupts the ECM, sensitizing these mice to kainate excitotoxicity (46). The disruption of the ECM by laminin fragments indicates that the ECM is an active structure, whose components can be replaced or competed against by excess exogenous laminin. The dynamic nature of the ECM would also permit the remodeling necessary during synaptic plasticity, and it has been reported that cleavage of laminin by plasmin can hinder LTP in rat hippocampal neurons (47).
Johdannosta (Introduction)
The plasminogen activator (PA)/plasminogen proteolytic cascade is known to be important for thrombolysis (1, 2). There are two mammalian PAs: tissue-type (tPA) and urokinase-type (uPA) (3).
PAs are serine proteases that cleave a specific peptide bond within the zymogen plasminogen to generate the active protease, plasmin, which is capable of degrading numerous substrates
In the vasculature, plasmin efficiently breaks down fibrin clots, aiding in hemostasis and vascular patency. This protease cascade is tightly regulated by the actions of serine protease inhibitors (serpins), of which plasminogen activator inhibitor-1 (PAI-1) and neuroserpin are the major cognate serpins for tPA, while plasmin is inhibited by α2 -antiplasmin (2).
Furthermore, tPA activity can be attenuated by rapid clearance through low-density lipoprotein receptor-related protein (LRP)-mediated endocytosis and augmented by binding annexin-II or to fibrin within a clot (4, 5).
Infusion
of PAs, such as recombinant tPA and its derivatives, is used for lysis
of fibrin clots to help restore blood flow following myocardial
infarction or thrombotic stroke (2).
Although tPA can be used for the treatment of stroke, there is a narrow
time-frame and limited patient population for which thrombolytics are
appropriate, since delayed delivery of tPA can lead to neuronal damage
or cerebral hemorrhage, worsening the outcome for the patient.
The
function of tPA, however, is not limited to the initiation of
thrombolysis. Recent research has shown that the tPA/plasminogen system
has other roles within the central nervous system (CNS). Although the
presence of uPA has been confirmed in the brain, its role has not been
fully investigated. Therefore, this review will focus on the various
functions of tPA in brain physiology and pathology.
tPA/plasminogen system in CNS physiology
tPA expression and regulation
tPA is highly expressed in the adult mouse brain in regions involved in learning and memory (hippocampus), fear and anxiety (amygdala), motor learning (cerebellum), and autonomic and endocrine functions (hypothalamus) (6–13). Both neurons and microglial cells express tPA.Plasminogen, PAI-1, and neuroserpin are also present in the brain indicating that the components of the tPA/plasminogen cascade are present in the CNS (9, 13–15).
In neurons, the expression of tPA can be under translational control; tPA expression is regulated by the binding of the cytoplasmic polyadenylation element binding (CPEB) protein which leads to the extension of tPA mRNA polyadenylation and a subsequent increase in tPA protein synthesis (16). This regulation of tPA expression allows for a rapid increase in activity in response to specific stimuli (as seen in synaptic plasticity), and the presence of cognate serpins of tPA in the CNS allows for swift and specific inactivation. The localization to axon terminals and the highly regulated axonal release of tPA is consistent with a proteolytic-dependent role for tPA in the CNS in which PA cascade activation alters the extracellular matrix (ECM) and modifies synapses, such as during seizure, kindling, and long-term potentiation (LTP) (6, 17).
While tPA also has been visualized in dendrites, the release of this protein from these structures has yet to be demonstrated (16).
There
is an additional level of complexity to tPA expression in neuronal
cells. In neurons, tPA is not constitutively secreted but contained in
vesicles. tPA can be released from secretory vesicles after membrane
depolarization or stimulation (18–21). This mechanism of regulated tPA secretion allows for rapid localized increase in tPA activity at the synapse.
The role of tPA in synaptic plasticity
Another action of the tPA/plasminogen system that contributes to LTP generation is cleavage of the pre-cursor form of brain-derived neurotrophic factor (proBDNF) to its mature form (mBDNF) (24). The application of mBDNF, derived from tPA/plasmin cleavage, to hippocampal slices can rescue impaired L-LTP in both tPA-deficient and plasminogen-deficient mice. This work reveals an interaction between the tPA/plasminogen axis and BDNF and suggests a potential impact of this interaction on LTP. These observations suggest further studies to define plasmin/proBDNF binding and identify putative mBDNF receptors for LTP propagation.
One of the molecules with which tPA
purportedly interacts to enhance LTP is the NR1 subunit of the
N-methyl-D-aspartate (NMDA) receptor. Using a neuronal cell culture
model, Nicole et al. reported that tPA cleaves NR1, enhancing
NMDA-mediated intracellular calcium levels and neuronal degeneration (25).
In this model, tPA cleaves at amino acid Arg260 of the NR1 subunit
leading to NMDA signaling enhancement; mutation of Arg260 to Ala260
abrogates tPA-induced NMDA activity augmentation (26). However, the direct cleavage of NR1 by tPA has not been observed in other studies (27, 28). An interaction between tPA and NR2B-containing NMDA receptors has been reported during ethanol withdrawal-induced seizures (29).
Therefore, although tPA can interact with either NR1 or NR2B, the
specific outcome of these interactions as they pertain to LTP have yet
to be delineated.
An additional tPA receptor affecting
synaptic plasticity is LRP (LDL-receptor related protein) An antagonist of LRP, receptor-associated
protein (RAP), hinders tPA-induced L-LTP and prevents rescue of synaptic
potentiation by addition of tPA in tPA-deficient mice (17).
Additionally, the binding of tPA to LRP can lead to the up-regulation
of matrix metalloproteinase-9 (MMP-9), a protease which can degrade the
ECM contributing to either synaptic plasticity or neuronal degeneration (30).
Interaction between LRP and tPA also contributes to blood-brain barrier (BBB) breakdown (31).
tPA-induced opening of the BBB is evident in both plasminogen-deficient
and MMP-9-deficient mice as measured by Evans blue dye extravasation,
implying that neither plasminogen nor MMP-9 is necessary for tPA to
produce its effect on vascular permeability.
However, the tPA-clearing
receptor LRP is involved since both RAP and anti-LRP antibodies can
block this specific tPA activity. The exact mechanism by which tPA
alters the BBB is still not clear and is subject to further
investigation.
tPA has also been studied in the amygdala, a brain region that regulates reponse to fear and anxiety (10, 12).
Acute restraint stress studies in mice indicate that one function of
this protease is in amygdala-dependent learning in fear response. tPA is
induced in the medial and central amygdala after acute restraint
stress, where it promotes stress-induced post-synaptic (phosphorylation
of ERK1/2) and axonal (amplified GAP-43 expression) neuronal changes (10).
tPA-deficient mice display impaired response to stress and abnormal
circulating levels of corticosterone during the recovery period after
stress. They also do not exhibit stress-induced anxiety as measured by
the elevated-plus maze test. These results indicate that tPA contributes
to proper control of hormonal stress response and has a significant
role in emotional learning.
Further research into the role of tPA in
stress has revealed that this protease is elevated after the infusion of
corticotrophin-releasing factor (CRF), an important hormone for
triggering the stress response, into the lateral ventricle (34).
The activation of tPA by CRF in the central and medial amygdala leads
to an increase of c-fos immunoreactivity, a measure of neuronal
activation. However, the function of tPA seems to be independent of
plasmin production during stress-induced anxiety, since
plasminogen-deficient mice, unlike tPA-deficient mice, do not show lower
levels of anxiety in the elevated plus-maze after restraint stress or
abnormal c-fos expression after CRF infusion into the ventricle. As the
function of tPA in stress and the amygdala have been uncovered, the next
challenge is to identify new therapies for anxiety-related disorders in
the context of the tPA/plasminogen axis.
Another area of
the brain in which tPA has been shown to have a role is the cerebellum,
which is responsible for motor learning. Seeds and colleagues reported
the up-regulation of tPA mRNA in rats after learning a complicated motor
task (traversing a runway by grabbing horizontal irregular pegs) (7).
Additionally, even though there were no apparent consequences, the rate
of cerebellar granule cell migration seems hindered in tPA-deficient
mice, since more granule cells are present in the molecular layer of the
cerebellum in these mice as compared to age-matched controls (8).
Consistent with the importance of proteolytic action, wild-type mice
infused with tPA inhibitors PAI-1 or tPA-STOP have deficits in
cerebellar motor learning (11).
Muller and Griesinger have shown the tPA/plasminogen proteolytic cascade is necessary for reverse occlusion, since inhibition of either protease prevents proper formation of thalamocortical connections for visual rescue (36). Other research has extended this finding, indicating that tPA/plasminogen activity allows for reorganization of connections in the visual cortex, again highlighting this proteolytic cascade’s contribution in synaptic plasticity (37). More specifically, two recent reports show that during monocular deprivation, tPA/plasminogen activity helps in structural remodeling by pruning dendritic spines and reorganizing the ECM (38, 39).
Addiction
can be considered a form of adaptive synaptic plasticity. In models of
morphine and ethanol addiction, tPA expression is elevated in the
nucleus accumbens and limbic system, respectively. The rewarding effects
of morphine can be measured by the conditioned place-preference test,
which associates the rewarding or aversive effect of a drug to placement
into a specific compartment. Both the rewarding effect of morphine and
morphine- related dopamine release are diminished in tPA-deficient and
plasminogen-deficient mice when compared to wild-type mice (40).
Although the effector substrate of plasmin in morphine addiction is not
yet identified, the role of plasmin in this pathway is evident.
In
addition to morphine addiction, ethanol consumption and withdrawal also
elevate tPA activity. Ethanol inhibits NMDA receptor activity, and NMDA
receptor numbers increase as an adaptive response. The rapid removal of
ethanol relieves this inhibition on the expanded population of NMDA
receptors, and when tPA acts on this large number of NR2B-containing
NMDA receptors, it can result in hyperexcitation and seizures. However,
in this instance, the primary effect of tPA does not appear to be
plasminogen activation but rather interaction with the NR2B subunit of
the NMDA receptor in a non-proteolytic manner (29).
Additionally, tPA-deficient mice also have reduced ethanol withdrawal
seizures (see below). This is an example of the progression of a
physiological role for tPA (synaptic plasticity in addiction) resulting
in a pathological consequence (seizure induction upon ethanol
withdrawal).
tPA function in CNS pathology
The role of tPA in neurotoxicity
While the understanding of physiological functions of tPA in the CNS has expanded, so has understanding of its roles in pathological situations. The participation of the tPA/plasminogen axis has been defined in neuronal degeneration due to excitotoxicity. Injection of kainate, an excitotoxic glutamate analog, into the CA1 region of the hippocampus of wild-type mice leads to neuronal damage, and this damage is reduced in either tPA-deficient or plasminogen-deficient mice (41–43). Neurodegeneration is prevented in wild-type mice co-injected with both kainate and α2 -antiplasmin, supporting the role of plasmin in this neuronal injury paradigm.Further investigation identified laminin, a component of the ECM, as a substrate of plasmin proteolysis, and laminin cleavage combined with glutamate excitotoxicity results in neuronal degeneration due to anoikis (43–46). Plasmin-cleaved laminin fragments or anti-laminin antibodies infused into the hippocampus of either wild-type or plasminogen-deficient mice disrupts the ECM, sensitizing these mice to kainate excitotoxicity (46). The disruption of the ECM by laminin fragments indicates that the ECM is an active structure, whose components can be replaced or competed against by excess exogenous laminin. The dynamic nature of the ECM would also permit the remodeling necessary during synaptic plasticity, and it has been reported that cleavage of laminin by plasmin can hinder LTP in rat hippocampal neurons (47).
While
the tPA/plasminogen axis contributes to excitotoxic neuronal
degeneration, tPA is also involved in other CNS pathologies. The role of
tPA has been studied in Alzheimer’s disease (AD), stroke, infarct
formation, and seizure spreading. tPA expression is elevated during
seizures, a state of synchronous, pathological hyperactivity in the CNS.
Comparable to observations in the hippocampus, delivery of kainate into
the rat amygdala results in damage to hippocampal neurons (48).
The neurodegeneration observed in the hippocampus after kainate
injection into the amygdala is tPA-dependent, since neuronal damage can
be attenuated by neuroserpin delivery into the brain (48).
Additionally, seizure spreading is plasminogen-independent, since
seizure inception in plasminogen-deficient mice was similar to wild-type
mice, and seizure onset is also delayed by neuroserpin. The
tPA/plasminogen system also contributes to handling-induced seizures
after ethanol withdrawal in mice, and these seizures are attenuated in
tPA-deficient mice (29).
The
role of tPA in infarct formation has also been described. tPA-deficient
mice have reduced infarct volume and neuronal damage as compared to
control mice subjected to middle cerebral artery occlusion (MCAO) (49, 50).
The infusion of recombinant tPA or delivery of tPA-expressing
adenovirus into tPA-deficient mice also led to increased infarct size
after MCAO, indicating a role for tPA in this process. The observation
that thrombolytics can increase the infarct size after MCAO is
independent of plasminogen activation since plasminogen-deficient mice
displayed larger infarcts post-MCAO. In accordance with the contribution
of tPA to infarct formation, PAI-1-deficient mice have increased
infarct size while neuroserpin-injected mice have diminished infarcts
after MCAO. Therefore, regulating tPA activity might be beneficial in
controlling infarct injury after stroke (50–52).
tPA in Alzheimer’s disease
Serpins in CNS pathology
There
is a significant elevation in PAI-1 and neuroserpin expression during
pathological insult to the brain. The increase of PAI-1 in the brain is
seen in neurological disorders such as AD and dementia, after kainate
injection into the CA1 region of the hippocampus, and after restraint
stress. Escalation of PAI-1 expression normally corresponds to a
depression of tPA activity, and it is thought to be a regulatory
response to increased tPA, since excessive tPA activity can contribute
to CNS pathology, such as by worsening neuronal damage. However, PAI-1
could interact with tPA, not as a serpin but as a binding partner to
mediate its effect on receptors including the NMDA receptors. Clearly,
tPA can function either as a protease or modulator of cell signaling,
and PAI-1 can influence both of these activities. The elevation of
neuroserpin, the other major tPA inhibitor in the CNS, has also been
implicated in regulation of seizure spreading, control of BBB integrity,
and emotional learning (15, 62, 63).
Conclusions
The
function of the tPA/plasminogen proteolytic cascade has been
conventionally assigned to fibrinolysis. However, existing research,
especially using mice deficient in specific components of the
fibrinolytic system, has extended the role of tPA and plasminogen from
thrombolytic enzymes to encompass functions in both CNS physiology and
pathology (Table I).
Identification of novel substrates for either tPA or plasmin in the CNS
would extend understanding of the influence of this proteolytic
cascade. New lessons learned about the function of the tPA/plasminogen
system can be utilized to identify novel therapies for slowing the
pathogenesis of disorders such as AD or attenuating the severity of
ethanol withdrawal-induced seizures. Further clarification of the
contributions of this proteolytic cascade to LTP (such as the
identification of the interaction domains between tPA and NR2B or
proBDNF and plasmin) might help ease cognitive decline. The potential
applications of new functions of the tPA/plasminogen proteolytic cascade
highlight the importance and complexity of this system.
Prenumerera på:
Inlägg (Atom)