http://www.tropicarium.se/visa_djur/?id=189
Jos mamboja on eläintarhasas, lie lähistössä (Tukholmasssa) aina saatavilla vastaseerumia mahdollisille käärmeenpuremille, joita voi työtapaturmana tulla, arvelen.
Etiketter
- -10
- -11)
- . sAPP:n normaali pilkkoja
- (Aortta9 aneurysma .
- <osteonektiini
- 2
- 3. (MMP-3
- 4 artikkelia
- 4 blade propel
- 4lehti-propellineni
- A Disintegrin And Metalloproteases
- Abeeta
- ABl2
- ACE1
- ACEI
- AD
- ADA10 geeniuutiset
- ADAM
- ADAM- molekyyleistä
- ADAM-15
- ADAM-17
- ADAM-17 inhibiittori
- ADAM-31
- ADAM-33
- ADAM-proteiiniperhe
- ADAM10
- ADAM10 alfasekretaasi
- ADAM10 ja ADAM17 degradomi
- ADAM17
- ADAM17 (2p.25.1)
- ADAM17 (ACE2 eli TACE)
- ADAM17 (TACE)
- ADAM17 inhibiittorikehittely
- ADAM17 sheddaasi
- ADAM17 substraatteja yli 80
- ADAM18
- ADAM19
- ADAM20
- ADAM22
- ADAM27
- ADAM28
- ADAM30
- ADAM33
- ADAM9
- ADAMs
- ADAMTS
- ADAMTS & SVMPs
- ADAMTS- proteinaasit ja 4 alaryhmää
- ADAMTS-13 ja sen vasta-aineet diagnostiikassa
- ADAMTS1
- ADAMTS13
- ADAMTS13 entsyymin puute
- ADAMTS15
- ADAMTS9 (Diabetes mellitus T2DM)
- Aggrekanaasi ja artriitti
- AGTR1 ( angiotensiinin II:n pääreseptori)
- AGTR2
- Aivokammio
- Aivotutkimusken edistyksistä
- Aktiivi D-vitamiini
- alendronate
- alfa-2M.
- alfa2-makroglobuliini
- alfasekretaasi
- ALL
- Amiloridi
- AML
- Angiogeneesin säätely
- angiostatiinin kaltaiset proteiinit
- Angiotensiini II
- Angiotensiini II ja maksavaurio
- Angiotensiini-II
- Angiotensiinin pilkkoutuminen
- Angiotensiinireseptori AT2
- anti-angiogeneettinen vaikutus
- antiangiogeeni
- antiangiogeeninen
- antioksidatiivinen polymeerikapselitekniikka
- antiparasiittinen
- Antisheddaasistrategian lääkekehittelyn vaihe 2016
- Aortta aneurysma . Suomennos.
- Aortta-aneurysma
- APOBEC3G
- Apoptoosiresistenssi
- APP
- APP prosessointi
- Aprotiniini
- astasiiniperhe
- astmamuutokset
- Autofagosomibiogeneesi 2013
- Autoimmuuni myokardiitti
- avainentsyymi RAASjärjestelmässä
- avainlinkki luonnollisen ja adaptiivisen immuniteetin välillä
- Aviojen valkea aines
- Bakteeriproteinaasit ja ihmisen MMP
- BDKRB1.
- BDKRB2
- betakaroteeni
- BM-40
- Bradykiniinireseptori B1
- Bradykiniinireseptori B2
- BRC5 geeniperhe
- BSG
- C3-C5
- Ca mammae c. metast.
- CALLA
- CAM
- CD10
- CD135
- CD147
- CD156B
- CD44
- Cecropin
- Celecoxib( COX-2 estäjä)
- CF
- cGAS-c-GAMP-STING signaalitie
- CMT2T
- COPD
- COPD (KOL)
- COPD(KOL)
- cornean toistuva erosio
- COVID-19 ja ADAMTS13 interaktiosta
- Covid-19 taudin vakavuusasteet ja ADAMTS-13 aktiviteetin alenema
- CPEB1(15q25.2)
- CRC
- Crosslinking
- CSVP
- Cu-metalloproteiinit
- Cys array domain
- Deathstalker
- dementiadiagnostiikka
- Dendriittisolujen kehitys
- Dendroaspis angusticeps
- dendroaspis polylepsis
- Dengue
- Dengue ja MMP-inhibiittori
- Diabetes
- Diabetes Egyptin tavallisin tauti. Kansanlääkkevaikutuksesta
- Disintegriini
- disintegriini ja MMP
- disintegriinin ja MMP
- DLG4
- Doxysykliinin MMPi vaikutus
- dsDNA sensori
- Dynaaminen luu ja MMP
- E-vitamiini
- ebola
- Ebola gp vaimennussäätää tärkeitä pintamolekyylejä
- Ebolan strategia; kysteiiniproteaasi-inhibiittori
- EBOV
- EBOV shed GP
- EBOV GP
- EC
- EC 3.4.24.-
- ECM
- ECM and Ebola
- ECM ja MMP proteiinit verkostona
- ECM kypsyminen
- Efriini-A3
- Efriini-A5
- EIPA
- ELA2 (19p13.3)
- elastaasi
- Elastaasi ja aortta-aneurysma
- Ellen Hanssonin väitöskirja sta
- Ellen Hanssonin väitöskirjasta
- Emfyseema
- EMMPRin
- EMT
- EMT-TF
- endometrioosi
- endoteelisolu
- Enterosyytti. Suolistohaavan paraneminen
- ER ja MMP-1
- ERK1/2
- erythroid promoting activity
- esim serralysiinit
- Euroopan tavalliset kyyt ja niiden puremat (2021)
- extrasellulaarinen matrix
- extrasellulaaristen MMPs indusoija
- FAP
- Fav-Afrique
- Fibrinolyysi
- Fibronektiini
- FIH ja Mint3 ja MT1-MMP rekrytoituvat legionellaa sisältäviin vakuoleihin (LCV)
- Flt
- Flt-3 L
- Flt3
- Flt3 estäjä
- Flt3 geeni
- Flt3L MMP
- Fluorokinoloneista
- FN
- Furiini
- FURIINI ja EBOV GP-prosessointi
- Fytiini
- G12perheen proteiinit
- Geeni CD151
- Geeni CD44
- Geeni FUR 15q26.1
- geenin sijainti
- gelatinaasi
- Gelatinaasi-inhibiittori thiirane
- H2O2
- Halofuginoni
- hematopoieettisen solun säätely
- Hemopexiinitoistot
- Hemopxeiinin kaltainen superperhe
- Hepatoma
- HIF1
- HMP
- HNE
- Hoitamaton Keliakia
- Horst Ibelgaufts 1995
- Huggormsbett
- human collagenase inhibitor
- hyaluronaanireseptori
- Hypertensio
- Hypoksian indusoima tekijä 1
- IBD
- Influenssavirusenkefalopatia
- Integriinit
- Invasiivisuus
- IPF
- IRF5
- ISBT 023 Indian veriryhmä
- ISBT 024
- ISBT 025
- isäntäsolun katepsiini B
- iTTP ja hTTP.
- K2 vitamiini
- kallikreiini-kiniinisysteemi ( MMP-3 aktivaatio)
- Kallikreiinigeenit ja reseptorit
- katepsiini L
- katepsiini-B
- katepsiini-inhibiittori
- Katepsiinit
- Keltainen skorpioni
- Keramidisyntaasi
- Kertausta MMP asiasta
- keuhkoahtauma
- keuhkofibroosi
- Keuhkokarsinooma
- Keuhkonsiirto ja bronchiolitis obliterans ja MMP-9 Neutrofiilielastaasi
- Keuhkonsiirto ja bronchiolitis obliterans 20 artikkelia
- Keuhkosyöpä
- keuhkosyöpä ja CPEB4
- keuhkovaurio
- Kiniinireseptorit B1 ja B2
- Kiniinirreseptori B2.
- Koagulaatiosysteemi ja plasminerginen systeemi
- kollagenaasi
- Kontrolloimaton ECM proteolyysi
- Kr. 9q34
- Kupari
- Kupari ja rintasyöpä
- Kutaani syst. skleroosi ja MMP-kaskadi
- Kysteiiniproteaasit ja niiden inhibiittorit
- Kyyn hemorhaginen metalloproteinaasi HMP
- Kyyn myrkyn toiseksi suurin entsyymiryhmä SVTLEs
- Kyyn pureman hoito
- Kyynpurema
- Kyynpuremasta
- käyttöindikaation tarkistusta
- Käärmeen myrkyssä voi olla maan tomusta niitä radioaktiivisiakin ainita
- Käärmeenmyrkky
- Käärmeenmyrkyn hyaluronidaasit SVHYA vertailussa. SVAPs.
- Käärmeenmyrkyn vasta-aineiden tärkeys
- Käärmeenpureman vaaroista (Dödliga ormbett) Käärmeseerumin valmistuksesta
- Käärmeenpuremien yleisyys
- Lapsen kyynpurematapaus
- Lisätietoa matrixmetalloproteinaasesita
- liukoinrn SEMA4D
- LOX entsyymi
- LPS ja sydämen dysfunktio
- Lubricin
- luuytimen seriiniproteaasi
- Lymfoma
- Lysyylioksidaasi
- Lyyn myrkky
- M Erlandssonin väitöskirja nivelreumasta
- M13 perhe
- Major Sheddases ADAM10 ja ADAm17
- Makrofagi
- Makrofagi sekretomi
- Makrofagielastaasi
- Maksakirroosin parantaminen
- maksametastaasi
- maligniteetti
- mamban myrkystä
- Mamban puremasta Dendroapsis
- Marimastat
- Matriksin metalloproteinaasi MMP-8 ja kudosvälitilan proteaasi-inhibiittori TIMP-1
- Matrilysiinidomeeni
- matrixmetalloproteinaasien kudosestäjiä
- MDC-perhe
- MDM2
- medullasiini
- Mepriinit
- Meprin beta
- MEROPS database
- mestastaasi
- metargidin
- metastasoituminen
- METH1
- metsinkiini superperhe
- Metzincin superfamily
- METZINCIN superperhe
- Metzinkiiniperheen alajakoa
- Metzinkiinisuperperhe
- Metzinkiinit ja seitsemän alaryhmää
- Michael Jonssinin väitöskirja
- Michael Jonssonin väitöskirja
- miR-29
- Miten legionella nitistää Syntaxiini17 proteiinin ja samalla kumoaa fagolysosomitietä
- MME(3q25.2) Beprilysiini
- MMP
- MMP AND autophagosome
- MMP inhibiittoreita 20 000 uutta
- MMP interaktio
- MMP ja demyelinisoiva tauti
- MMP ja Lymen neuroborrelioosi
- MMP ja TIMP perheet genomissa
- MMP kaskadi
- MMP kirjosta
- MMP luettelo ja substaatit
- MMP osuus Abeeta4 biogeneesissä.
- MMP ovat sinkistä riippuvia endopeptidaaseja
- MMP perheen biologinen rooli ja kriittinen tasapaino
- MMP rakennekuva
- MMP rooli gliomassa. Onko vastavaikuttajia?
- MMP- kaskadi iskemisessä halvauksessa
- MMP-1
- MMP-11 ja rintasyöpä
- MMP-12
- MMP-12 inhibittori
- MMP-12( gelatinaasi A)
- MMP-13 (Kr.11q22.2)
- MMP-15
- MMP-15 (MT-MMP-2)
- MMP-19
- MMP-2
- MMP-2 (Gelatinaasi-A)- inhibiittoreista
- MMP-2 estäjä
- MMP-2. MMP-9
- MMP-28
- MMP-28 (17q21.1) epilysiini
- MMP-3
- MMP-3 ja ADAMTS-5
- MMP-3 ja osteoartriitti
- MMP-3 pilkkoo A2AP:tä
- MMP-7
- MMP-8
- MMP-9
- MMP-9 inhibitio
- MMP-9 suppressio
- MMP-9 inhibiittori minosykliinihydrokloridi
- MMP-9 inhibitio
- MMP-9 ja melatoniini
- MMP-ja MT-MMP-substraateista ja inhibiittoreista
- MMP-järjestelmä keuhkofibroosissa
- MMP-kirjo ja Ca Mammae riski
- MMP-perhe
- MMP1 (11q22.3)
- MMP2
- MMP8-fuusioproteiini
- MMP9
- MMPI
- MMPs
- MMPs in Ca mammae
- MMPs Lymen neuroborrelioosissa
- MMPs reseptori CD44
- Monosyytti
- Monosyytti ja MMP
- Morbilli ja MMP
- MT-MMP
- MT.MMP
- MT1-MMP
- MT1-MMP substraatti
- MT1-MMP kirjot primäärisyövässä ja niiten ihometastaasissa
- MTs
- MUC-1
- Musiini 1 MUC1
- N-cadheriini
- Navigate
- NCAM
- NEP
- Neuroligiini-1
- Neutrofiilielastaas
- neutrofiilielastaasi
- NHE-I
- Nikamavälilevydegeneraatiomalli
- Nikotiini. LPS
- NISBD
- NISBD1
- nivelneste
- Nivelreuma
- Nivelreuman tapahtumat nivelrustossa ja luussa . Mats Dehlinin väitöskirja
- nivelruston sorvaus
- normaali sAPP
- NOTCH
- Notcsignaloinnin estäjä
- NSCLC
- olmesartan
- Onkolyyttinen tuhkarokkovirus
- organisaatio
- osteoblasti
- Osteonektiini
- Oxdordlista
- p53
- pahanlaatuinen tauti
- PAI-1:ta . uPA:ta
- Periostat
- Perisyytti
- PGE(2=
- Pinttynyt maksakirroosi
- Plasmiini(MMP-3 kaskadi
- Plasmin
- Plasminogeeni
- Plasminogeeni-plasmiini ja syöpä
- Plasminogeeni-plasmiini- peräinen ANGIOSTATIINI
- Pohdittavaksi glu-css antiporter glioomassa
- Pravastatiinin
- PRCGVPDS-gluthatiolation
- Pre-angiotensinogeeni tarvitsee reniinin.
- PRG4 1q25-q31
- PRMT
- pro-MMP7
- prolyl-tRNA syntaasin estäjä
- proproteiinikonvertaasi
- proteaasi-antiproteaasiepätasapaino keuhkofibroosissa
- proteiiniarginiini metyylitransferaasi
- proteoglykaani
- proteomitekniikka
- Proteus ja diabetes.
- Prtoeiini C aPC activate gelatinase A
- Pseudpmpnas
- Punkin syljen merkitys verirqavinnon hankinnassa
- Punkkien syljen metalloproteinaasit
- RA
- Reseveratroli ja MMP-13suppressio?
- resveratroli
- Rintasyöpä
- rusto
- S100A4 metastasiini
- Samuel Bagster 1875
- SARA
- SCA43. membraanimetalloendopeptidaasi
- SEMA3C
- SEMA3C semaforiini-3C
- SEMA4D
- Semaforiini
- seriiniproteaasi NE
- Serralysiiniperhe Virulenssiproteiineja
- Serralysiinistä vuonna 1999
- Serralysin 2020
- Sheddase
- signalointitiet
- Sinkkiproteiini
- SIRT-1
- SLPI proteaasi-inhibiittori
- SMAD
- SMURF
- SNIP
- Solu Adheesio Molekyyli
- Sorafenib (VEGFR estäjä)
- Sorvareiden ja Kähyjen Klaani MA
- SPARC
- STAT3
- STAT3signaloinnin inhibitio syöpäterapiassa
- Stimulator of Interferon Genes
- STING
- stromelysiini
- stromelysiini-1
- Stromelysiinit 1
- suhde MMP kaskadiin päin
- sulfatidi
- Sunitinib
- Suomalainen väiotöskirja
- Suomalaisia artikkeleita
- suonituppi
- surviviini
- Surviviini inhibitio
- Surviviini nuclear shuttle protein
- SVD
- SVMP
- Syndekaani-4
- sytokiiniverkosto
- syöpäsolun migroituminen
- T1DM ja MMPs
- TACE
- TACE/ADAM17
- TAFI
- tetraspaniini
- Tetrasykliinijohdannainen kollagenaasi-inhibiittorina
- TGFbeta/SMAD signalointi
- TIMP
- TIMP luettelo ja tehtävät
- TIMP- 1 väitöskirjoissa
- TIMP-1
- TIMP-1 metabolisessa oireyhtymssä
- TIMP-1 ei ole vain MMP-inhibiittori
- TIMP-1 geeni X kromosomissa
- TIMP-1 geeni.
- TIMP-1 ja glioblastooma
- TIMP-2
- TIMP-3
- TIMP-4/CD63 ja gliooma. Astrosyyttinen fenotyyppi
- TIMP1 geeni
- TIMP3 ja SIRTUIINI
- TIMPs
- TNFalfa
- TNFalfa konvertaasi
- TOPA
- tPA
- tPA /plasminogeeni axisd
- Treenaus ja obesitas-aspekti
- Trombomoduliini ja MMP
- TTP
- Tulehdus ja oksidatiivinen strtessi aktivoi proMMP
- Tupakansavu asetyloi TIMP1. SIRT1 deasetyloi TIMP1. TIMP/MMP9 tasapaino
- Tutkimuksia MMP klusterista keuhkofibroosissa (IPF)
- Tutukimustyö
- UC
- uPA
- uPA inhibiittori
- uPAR
- urokinaasi
- UTE-1
- uUusi asenne fluorokinoloneihin 2019
- VaD
- vaiutaa angiostatiinin syntyä
- Valtimoseinämän jäykkyys
- Veriaivoeste
- veriryhmä OK
- Veriryhmä Raph
- Vipera Berus myrkkyjen tutkimus
- vitronektin
- Voiko MMP-kaskadia rauhoittaa
- VWF
- vWF pilkkova proteaasi
- Välilevy
- Wikipedian yleiskatsaus MMPs 2017
- ZapA metalloproteaasi on IgA.ta hajoittava
- ZEB
- Zinkiinit
- ZnMc_MMP
tisdag 4 september 2018
Katsauksia mamban pureman biologiasta ja hoidosta
1996
https://www.wemjournal.org/article/S1080-6032(96)71002-5/pdf
2017 Sveitsi, A case report
https://www.hindawi.com/journals/cricc/2017/5021924/
Abstract
Mambas (genus Dendroaspis) are among the most feared venomous African snakes. Without medical treatment, mamba bites are frequently fatal. First-aid treatment includes lymphatic retardation with the pressure immobilization technique. Medical management comprises continuous monitoring, securing patency of the airway, ensuring adequate ventilation, symptomatic measures, and administration of specific antivenin. We report an unusual case of a snake breeder bitten by a black mamba in Switzerland, report the clinical course, and review the lifesaving emergency management of mamba bites. This case highlights the importance of early antivenin administration and suggests that emergency and critical care physicians as well as first responders all around the world should be familiar with clinical toxinology of exotic snake bites as well as with the logistics to most rapidly make the specific antivenin available.
“The snake bites the tamer first.”
Romanian Proverb.
1. Introduction
Dendroaspis polylepis (black mamba) is one of the most dangerous snakes worldwide. Without medical treatment, mamba bites are frequently fatal [1]. As mamba bites are rare in Europe [2–5] treatment can be challenging, particularly if rapid administration of antivenin fails [6]. We report the case of a Swiss snake breeder who was bitten by a black mamba, report the typical clinical course, and review the management of neurotoxic snake bites.
2. Case Presentation
Written informed consent for publication was obtained from the patient.
While feeding a 5-year-old male black mamba, a 34-year-old snake breeder suddenly noticed a tiny bloody mark on his forearm and, at the same time, a slight tingling of his lips. He immediately realized that he had been bitten and called a befriended snake expert to seek advice. The patient was thus able to provide the first responders with detailed information about the snake and on where to obtain the corresponding antivenin. He instructed his wife to apply a pressure bandage to the forearm. Within the next five minutes, chest tightness, generalized paresthesia, and fasciculation occurred. Upon arrival of the ambulance, the patient was unable to walk, was tachypneic, and had prominent dysarthria. Assuming a concomitant allergic reaction, the paramedics administered methylprednisolone, clemastine, and adrenaline before transferring the patient to the nearest hospital. In the meantime, the Swiss helicopter ambulance collected the antivenin from one of the 8 national antivenin depots.
Forty minutes after the bite, the patient arrived in the emergency department, complaining of worsening fasciculations and paresthesia affecting the extremities and the face. On physical examination, he was fully conscious with a heart rate of 105/min and a blood pressure of 165/80 mmHg. He was tachypneic at 30/min. Pulse oximetry revealed an oxygen saturation of 95% on room air. There were two tiny puncture wounds with local swelling and redness on the left forearm. Motor function was normal, except for mild ptosis. Seventy minutes after the bite, the patient was given 2 vials (20 ml) of “SAMIR Polyvalent Snake Antivenin” together with 2.5 mg of IV midazolam for ongoing hyperventilation. Thereafter, the patient was transferred to our tertiary intensive care unit for further treatment.
Upon arrival in our ICU, the patient was hemodynamically stable but still tachycardic and tachypneic. Fasciculations, dysarthria, and ptosis had slightly improved. ECG showed a grade 1 atrioventricular block without any other abnormalities. Initial laboratory tests were unremarkable, apart from moderate respiratory alkalosis. Over the next few hours, sweating, chills, and difficulty with swallowing as well as nausea occurred. However, the airway was never compromised, coughing reflex was intact, and respiratory failure did not occur. Therefore, and because of initial concerns about a possible allergic reaction, we decided against further antivenin administration. On the next day, symptoms of envenomation had improved, but the patient developed cellulitis of the bitten forearm and rhabdomyolysis, with a peak serum creatine kinase level of 16,049 U/L. Upon treatment with intravenous fluids and amoxicillin/sulbactam, his condition gradually improved. After four days in the hospital, he was discharged home with muscular pain as the only residual symptom. A few weeks later, the patient had fully recovered.
3. Discussion
Snake bites by Dendroaspis are rare in Europe. In 1987 Markwalder and Koller [2] described two cases of bites by Dendroaspis viridis (the green mamba). In France, one victim survived a green mamba bite although administration of antivenin failed [6]. Bites by black mambas have been reported in Germany [3] and in the Czech Republic [4]. To our knowledge, our case is the third registered black mamba bite in Switzerland and the first to be published.
The venom of black mambas is highly neurotoxic and contains a combination of α-neurotoxins, which induce postsynaptic blockade of the neuromuscular junctions, and dendrotoxins, which inhibit the voltage-dependent potassium channels, enhancing the release of acetylcholine at the neuromuscular junction, thus producing a neuromuscular block similar to a depolarizing block [7, 8]. In contrast, fasciculins act as acetylcholinesterase inhibitors, thus increasing the availability of acetylcholine at the neuromuscular junction and producing generalized, long-lasting fasciculations [9]. Calciseptine, another venom component, inhibits smooth muscle contraction and cardiac function by blocking L-type calcium channels [10]. The venom does not usually cause tissue destruction and necrosis [11, 12] as it lacks significant protease activity [13], although it does contain low percentages of other proteins, such as metalloproteinases (MMPs) , hyaluronidase, prokineticin, nerve growth factor (NGF), vascular endothelial growth factor (VEGF), phospholipase A2 (PLA2) , 5′-nucleotidase, and phosphodiesterase (PDE) [7].
After a mamba bite, symptoms can occur as quickly as within 10 minutes [13]. A tingling sensation at the site of the bite may be the only initial sign of envenomation [14]. Other neurological symptoms include miosis, ptosis, blurred vision, bulbar symptoms, paresthesia, fasciculations, ataxia, and loss of consciousness. General signs of envenomation may include local pain, nausea, cough, and profuse sweating from asympthetic overstimulation. In severe cases, intubation, mechanical ventilation, and circulatory support may be necessary [4].
First-aid management includes reassuring the patient, removing constricting jewelry, and lymphatic retardation with pressure immobilization technique. Multiple bites are common, as mambas can strike repeatedly. A bandage is wrapped starting proximal to the bite site, just above the fingers or toes, and should cover the entire limb. Subsequent immobilization by a splint is recommended [15]. The bandage is not removed until administration of antivenin [16]. A tourniquet is not recommended.
The cornerstone of medical management is ensuring patent airway and adequate ventilation, providing circulatory support when necessary, and intravenous administration of specific antivenin [17]. Antivenin treatment should be considered whenever mamba envenomation is diagnosed by the presence of the systemic or neurological signs described above. Absence of fang marks does not preclude envenomation. On the other hand, presence of fang (myrkkyhammas) marks does not confirm it, since dry bites may occur. The recommended initial dose of SAIMR polyvalent antiserum is 20 ml (2 vials) [18]. Additional antivenin (up to five times the initial dose) should be titrated against the signs and symptoms of envenomation. Antivenin treatment is effective even when neurotoxic effects have become quite pronounced [19]. Therefore, there is no upper time limit for antivenin administration [20].
Antivenin therapy is not without risks. IgE-mediated allergic reactions including frank anaphylaxis can occur either to the antivenin or to the venom itself [21]. Delayed reactions (within 6–21 days after exposure) do occur, such as urticaria and serum sickness disease [22]. However, given the poor prognosis of an untreated mamba bite, even an anaphylactic response does not represent a contraindication to antivenin administration. In such cases, antivenin infusion should be temporarily discontinued and the patient should be stabilized before the antivenin infusion is resumed at a slower rate. An intravenous test dose of 1 ml diluted in 9 ml normal saline may be used in patients at high risk of allergic reactions. Limited evidence supports the use of prophylactic epinephrine prior to the administration of antivenins [23, 24]. There is no evidence for pretreatment with either antihistamines or corticosteroids [25, 26].
In our patient, fasciculation, muscle contractions, bulbar paralysis, and rhabdomyolysis were the main clinical symptoms. Respiratory failure did not occur for three possible reasons. First reason is the patient’s immediate recognition of the bite and exemplary first-aid response, including pressure bandage and physical rest. Second, although the venom metering hypothesis is controversial [27] the amount of venom injected was probably submaximal as the bite was most likely defensive. Third, the rapid availability of antivenin prevented further deterioration, especially respiratory failure. However, the clinical course probably would have been more severe, if the patient himself had not reacted so swiftly. Our report highlights the importance of early antivenin administration. Emergency and critical care physicians as well as first responders around the world should, therefore, be familiar with clinical toxinology of snake bites and with the logistics to most rapidly make the specific antivenin available.
Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
References
P. A. Christensen, “Snakebite and the use of antivenom in southern Africa,” South African medical journal, vol. 59, no. 26, pp. 934–938, 1981. View at Google Scholar
K. Markwalder and M. Koller, “Mamba bites. 2 case reports and observations on the therapy of neurotoxic poisonous snake bites,” Schweizerische Rundschau fur Medizin Praxis, vol. 76, no. 46, pp. 1281–1284, 1987. View at Google Scholar
M. Schutzbach, S. Vonderhagen, and M. Jäger, “Antivenom therapy after a black mamba snakebite,” Unfallchirurg, vol. 119, no. 12, pp. 1053–1056, 2016. View at Publisher · View at Google Scholar · View at Scopus
J. Závada, J. Valenta, O. Kopecký, Z. Stach, and P. Leden, “Black mamba dendroaspis polylepis bite: a case report,” Prague Medical Report, vol. 112, no. 4, pp. 298–304, 2011. View at Google Scholar · View at Scopus
M. Stadelmann, M. Ionescu, M. Chilcott, J.-L. Berney, and L. Gétaz, “Exotic snake bites in Switzerland,” Revue Medicale Suisse, vol. 6, no. 248, pp. 969–972, 2010. View at Google Scholar · View at Scopus
T. Leclerc, B. Debien, J.-P. Perez, M.-P. Petit, and B. Lenoir, “Mamba envenomation in mainland France: management of exotic envenomations needs rethinking,” Annales Francaises d'Anesthesie et de Reanimation, vol. 27, no. 4, pp. 323–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
A. H. Laustsen, B. Lomonte, B. Lohse, J. Fernández, and J. M. Gutiérrez, “Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development,” Journal of Proteomics, vol. 119, pp. 126–142, 2015. View at Publisher · View at Google Scholar · View at Scopus
D. Petras, P. Heiss, R. A. Harrison, R. D. Süssmuth, and J. J. Calvete, “Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals,” Journal of Proteomics, vol. 146, pp. 148–164, 2016. View at Publisher · View at Google Scholar · View at Scopus
U. K. Ranawaka, D. G. Lalloo, H. J. de Silva, and J. White, “Neurotoxicity in snakebite—the limits of our knowledge,” PLoS Neglected Tropical Diseases, vol. 7, no. 10, Article ID e2302, 2013. View at Publisher · View at Google Scholar
J. R. De Weille, H. Schweitz, P. Maes, A. Tartar, and M. Lazdunski, “Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2437–2440, 1991. View at Publisher · View at Google Scholar · View at Scopus
R. Hilligan, “Black mamba bites: report of 2 cases,” South African Medical Journal, vol. 72, no. 3, pp. 220-221, 1987. View at Google Scholar · View at Scopus
H. M. Strover, “Report on a death from black mamba bite (Dendroaspis polylepis),” Central African Journal of Medicine, vol. 13, no. 8, pp. 185-186, 1967. View at Google Scholar · View at Scopus
N.-H. Tan, A. Arunmozhiarasi, and G. Ponnudurai, “A comparative study of the biological properties of Dendroaspis (mamba) snake venoms,” Comparative Biochemistry and Physiology. Part C, Comparative, vol. 99, no. 3, pp. 463–466, 1991. View at Publisher · View at Google Scholar · View at Scopus
Chapman D. S., “The symptomatology, pathology, and treatment of the bites of venomous snakes of central and southern Africa,” in Venomous Animals and their Venoms, pp. 463–527, Academic Press, New York, NY, USA, 1968. View at Google Scholar
S. K. Sutherland, Australian Animal Toxins, Oxford University Press, Melbourne, Australia, 1983.
P. S. Hodgson and T. M. Davidson, “Biology and treatment of the mamba snakebite,” Wilderness and Environmental Medicine, vol. 7, no. 2, pp. 133–145, 1996. View at Publisher · View at Google Scholar · View at Scopus
WHO, Guidelines for the Prevention and Clinical Management of Snakebite in Africa, WHO, 2010, http://apps.who.int/iris/handle/10665/204458.
N. F. Moran, W. J. Newman, R. G. Theakston, D. A. Warrell, and D. Wilkinson, “High incidence of early anaphylactoid reaction to SAIMR polyvalent snake antivenom,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 92, no. 1, pp. 69-70, 1998. View at Publisher · View at Google Scholar
S. K. Sutherland, “Antivenoms: better late than never,” Medical Journal of Australia, vol. 2, no. 24, p. 813, 1977. View at Google Scholar · View at Scopus
S. Dwivedi, S. Sheshadri, and C. D'Souza, “Time limit for anti-snake venom administration,” The Lancet, vol. 334, no. 8663, p. 622, 1989. View at Publisher · View at Google Scholar · View at Scopus
P. Malasit, D. A. Warrell, P. Chanthavanich et al., “Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites,” British Medical Journal, vol. 292, no. 6512, pp. 17–20, 1986. View at Publisher · View at Google Scholar · View at Scopus
J. E. Erffmeyer, “Serum sickness,” Annals of Allergy, vol. 56, no. 2, pp. 105–110, 1986. View at Google Scholar · View at Scopus
J. Tibballs, “Premedication for snake antivenom,” Medical Journal of Australia, vol. 160, no. 1, pp. 4–7, 1994. View at Google Scholar · View at Scopus
A. P. Premawardhena, C. E. De Silva, M. M. D. Fonseka, S. B. Gunatilake, and H. J. De Silva, “Low dose subcutaneous adrenaline to prevent acute adverse reactions to antivenom serum in people bitten by snakes: randomised, placebo controlled trial,” British Medical Journal, vol. 318, no. 7190, pp. 1041–1043, 1999. View at Publisher · View at Google Scholar · View at Scopus
H. W. Fan, L. F. Marcopito, J. L. C. Cardoso et al., “Sequential randomised and double blind trial of promethazine prophylaxis against early anaphylactic reactions to antivenom for bothrops snake bites,” British Medical Journal, vol. 318, no. 7196, pp. 1451–1453, 1999. View at Publisher · View at Google Scholar · View at Scopus
I. B. Gawarammana, S. A. Kularatne, W. P. Dissanayake, R. P. V. Kumarasiri, N. Senanayake, and H. Ariyasena, “Parallel infusion of hydrocortisone ± chlorpheniramine bolus injection to prevent acute adverse reactions to antivenom for snakebites: a randomised, double-blind, placebo-controlled study,” Medical Journal of Australia, vol. 180, no. 1, pp. 20–23, 2004. View at Google Scholar · View at Scopus
B. A. Young, C. E. Lee, and K. M. Daley, “Do snakes meter venom?” BioScience, vol. 52, no. 12, pp. 1121–1126, 2002. View at Publisher · View at Google Scholar · View at Scopus
https://www.wemjournal.org/article/S1080-6032(96)71002-5/pdf
2017 Sveitsi, A case report
https://www.hindawi.com/journals/cricc/2017/5021924/
Abstract
Mambas (genus Dendroaspis) are among the most feared venomous African snakes. Without medical treatment, mamba bites are frequently fatal. First-aid treatment includes lymphatic retardation with the pressure immobilization technique. Medical management comprises continuous monitoring, securing patency of the airway, ensuring adequate ventilation, symptomatic measures, and administration of specific antivenin. We report an unusual case of a snake breeder bitten by a black mamba in Switzerland, report the clinical course, and review the lifesaving emergency management of mamba bites. This case highlights the importance of early antivenin administration and suggests that emergency and critical care physicians as well as first responders all around the world should be familiar with clinical toxinology of exotic snake bites as well as with the logistics to most rapidly make the specific antivenin available.
“The snake bites the tamer first.”
Romanian Proverb.
1. Introduction
Dendroaspis polylepis (black mamba) is one of the most dangerous snakes worldwide. Without medical treatment, mamba bites are frequently fatal [1]. As mamba bites are rare in Europe [2–5] treatment can be challenging, particularly if rapid administration of antivenin fails [6]. We report the case of a Swiss snake breeder who was bitten by a black mamba, report the typical clinical course, and review the management of neurotoxic snake bites.
2. Case Presentation
Written informed consent for publication was obtained from the patient.
While feeding a 5-year-old male black mamba, a 34-year-old snake breeder suddenly noticed a tiny bloody mark on his forearm and, at the same time, a slight tingling of his lips. He immediately realized that he had been bitten and called a befriended snake expert to seek advice. The patient was thus able to provide the first responders with detailed information about the snake and on where to obtain the corresponding antivenin. He instructed his wife to apply a pressure bandage to the forearm. Within the next five minutes, chest tightness, generalized paresthesia, and fasciculation occurred. Upon arrival of the ambulance, the patient was unable to walk, was tachypneic, and had prominent dysarthria. Assuming a concomitant allergic reaction, the paramedics administered methylprednisolone, clemastine, and adrenaline before transferring the patient to the nearest hospital. In the meantime, the Swiss helicopter ambulance collected the antivenin from one of the 8 national antivenin depots.
Forty minutes after the bite, the patient arrived in the emergency department, complaining of worsening fasciculations and paresthesia affecting the extremities and the face. On physical examination, he was fully conscious with a heart rate of 105/min and a blood pressure of 165/80 mmHg. He was tachypneic at 30/min. Pulse oximetry revealed an oxygen saturation of 95% on room air. There were two tiny puncture wounds with local swelling and redness on the left forearm. Motor function was normal, except for mild ptosis. Seventy minutes after the bite, the patient was given 2 vials (20 ml) of “SAMIR Polyvalent Snake Antivenin” together with 2.5 mg of IV midazolam for ongoing hyperventilation. Thereafter, the patient was transferred to our tertiary intensive care unit for further treatment.
Upon arrival in our ICU, the patient was hemodynamically stable but still tachycardic and tachypneic. Fasciculations, dysarthria, and ptosis had slightly improved. ECG showed a grade 1 atrioventricular block without any other abnormalities. Initial laboratory tests were unremarkable, apart from moderate respiratory alkalosis. Over the next few hours, sweating, chills, and difficulty with swallowing as well as nausea occurred. However, the airway was never compromised, coughing reflex was intact, and respiratory failure did not occur. Therefore, and because of initial concerns about a possible allergic reaction, we decided against further antivenin administration. On the next day, symptoms of envenomation had improved, but the patient developed cellulitis of the bitten forearm and rhabdomyolysis, with a peak serum creatine kinase level of 16,049 U/L. Upon treatment with intravenous fluids and amoxicillin/sulbactam, his condition gradually improved. After four days in the hospital, he was discharged home with muscular pain as the only residual symptom. A few weeks later, the patient had fully recovered.
3. Discussion
Snake bites by Dendroaspis are rare in Europe. In 1987 Markwalder and Koller [2] described two cases of bites by Dendroaspis viridis (the green mamba). In France, one victim survived a green mamba bite although administration of antivenin failed [6]. Bites by black mambas have been reported in Germany [3] and in the Czech Republic [4]. To our knowledge, our case is the third registered black mamba bite in Switzerland and the first to be published.
The venom of black mambas is highly neurotoxic and contains a combination of α-neurotoxins, which induce postsynaptic blockade of the neuromuscular junctions, and dendrotoxins, which inhibit the voltage-dependent potassium channels, enhancing the release of acetylcholine at the neuromuscular junction, thus producing a neuromuscular block similar to a depolarizing block [7, 8]. In contrast, fasciculins act as acetylcholinesterase inhibitors, thus increasing the availability of acetylcholine at the neuromuscular junction and producing generalized, long-lasting fasciculations [9]. Calciseptine, another venom component, inhibits smooth muscle contraction and cardiac function by blocking L-type calcium channels [10]. The venom does not usually cause tissue destruction and necrosis [11, 12] as it lacks significant protease activity [13], although it does contain low percentages of other proteins, such as metalloproteinases (MMPs) , hyaluronidase, prokineticin, nerve growth factor (NGF), vascular endothelial growth factor (VEGF), phospholipase A2 (PLA2) , 5′-nucleotidase, and phosphodiesterase (PDE) [7].
After a mamba bite, symptoms can occur as quickly as within 10 minutes [13]. A tingling sensation at the site of the bite may be the only initial sign of envenomation [14]. Other neurological symptoms include miosis, ptosis, blurred vision, bulbar symptoms, paresthesia, fasciculations, ataxia, and loss of consciousness. General signs of envenomation may include local pain, nausea, cough, and profuse sweating from asympthetic overstimulation. In severe cases, intubation, mechanical ventilation, and circulatory support may be necessary [4].
First-aid management includes reassuring the patient, removing constricting jewelry, and lymphatic retardation with pressure immobilization technique. Multiple bites are common, as mambas can strike repeatedly. A bandage is wrapped starting proximal to the bite site, just above the fingers or toes, and should cover the entire limb. Subsequent immobilization by a splint is recommended [15]. The bandage is not removed until administration of antivenin [16]. A tourniquet is not recommended.
The cornerstone of medical management is ensuring patent airway and adequate ventilation, providing circulatory support when necessary, and intravenous administration of specific antivenin [17]. Antivenin treatment should be considered whenever mamba envenomation is diagnosed by the presence of the systemic or neurological signs described above. Absence of fang marks does not preclude envenomation. On the other hand, presence of fang (myrkkyhammas) marks does not confirm it, since dry bites may occur. The recommended initial dose of SAIMR polyvalent antiserum is 20 ml (2 vials) [18]. Additional antivenin (up to five times the initial dose) should be titrated against the signs and symptoms of envenomation. Antivenin treatment is effective even when neurotoxic effects have become quite pronounced [19]. Therefore, there is no upper time limit for antivenin administration [20].
Antivenin therapy is not without risks. IgE-mediated allergic reactions including frank anaphylaxis can occur either to the antivenin or to the venom itself [21]. Delayed reactions (within 6–21 days after exposure) do occur, such as urticaria and serum sickness disease [22]. However, given the poor prognosis of an untreated mamba bite, even an anaphylactic response does not represent a contraindication to antivenin administration. In such cases, antivenin infusion should be temporarily discontinued and the patient should be stabilized before the antivenin infusion is resumed at a slower rate. An intravenous test dose of 1 ml diluted in 9 ml normal saline may be used in patients at high risk of allergic reactions. Limited evidence supports the use of prophylactic epinephrine prior to the administration of antivenins [23, 24]. There is no evidence for pretreatment with either antihistamines or corticosteroids [25, 26].
In our patient, fasciculation, muscle contractions, bulbar paralysis, and rhabdomyolysis were the main clinical symptoms. Respiratory failure did not occur for three possible reasons. First reason is the patient’s immediate recognition of the bite and exemplary first-aid response, including pressure bandage and physical rest. Second, although the venom metering hypothesis is controversial [27] the amount of venom injected was probably submaximal as the bite was most likely defensive. Third, the rapid availability of antivenin prevented further deterioration, especially respiratory failure. However, the clinical course probably would have been more severe, if the patient himself had not reacted so swiftly. Our report highlights the importance of early antivenin administration. Emergency and critical care physicians as well as first responders around the world should, therefore, be familiar with clinical toxinology of snake bites and with the logistics to most rapidly make the specific antivenin available.
Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
References
P. A. Christensen, “Snakebite and the use of antivenom in southern Africa,” South African medical journal, vol. 59, no. 26, pp. 934–938, 1981. View at Google Scholar
K. Markwalder and M. Koller, “Mamba bites. 2 case reports and observations on the therapy of neurotoxic poisonous snake bites,” Schweizerische Rundschau fur Medizin Praxis, vol. 76, no. 46, pp. 1281–1284, 1987. View at Google Scholar
M. Schutzbach, S. Vonderhagen, and M. Jäger, “Antivenom therapy after a black mamba snakebite,” Unfallchirurg, vol. 119, no. 12, pp. 1053–1056, 2016. View at Publisher · View at Google Scholar · View at Scopus
J. Závada, J. Valenta, O. Kopecký, Z. Stach, and P. Leden, “Black mamba dendroaspis polylepis bite: a case report,” Prague Medical Report, vol. 112, no. 4, pp. 298–304, 2011. View at Google Scholar · View at Scopus
M. Stadelmann, M. Ionescu, M. Chilcott, J.-L. Berney, and L. Gétaz, “Exotic snake bites in Switzerland,” Revue Medicale Suisse, vol. 6, no. 248, pp. 969–972, 2010. View at Google Scholar · View at Scopus
T. Leclerc, B. Debien, J.-P. Perez, M.-P. Petit, and B. Lenoir, “Mamba envenomation in mainland France: management of exotic envenomations needs rethinking,” Annales Francaises d'Anesthesie et de Reanimation, vol. 27, no. 4, pp. 323–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
A. H. Laustsen, B. Lomonte, B. Lohse, J. Fernández, and J. M. Gutiérrez, “Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development,” Journal of Proteomics, vol. 119, pp. 126–142, 2015. View at Publisher · View at Google Scholar · View at Scopus
D. Petras, P. Heiss, R. A. Harrison, R. D. Süssmuth, and J. J. Calvete, “Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals,” Journal of Proteomics, vol. 146, pp. 148–164, 2016. View at Publisher · View at Google Scholar · View at Scopus
U. K. Ranawaka, D. G. Lalloo, H. J. de Silva, and J. White, “Neurotoxicity in snakebite—the limits of our knowledge,” PLoS Neglected Tropical Diseases, vol. 7, no. 10, Article ID e2302, 2013. View at Publisher · View at Google Scholar
J. R. De Weille, H. Schweitz, P. Maes, A. Tartar, and M. Lazdunski, “Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2437–2440, 1991. View at Publisher · View at Google Scholar · View at Scopus
R. Hilligan, “Black mamba bites: report of 2 cases,” South African Medical Journal, vol. 72, no. 3, pp. 220-221, 1987. View at Google Scholar · View at Scopus
H. M. Strover, “Report on a death from black mamba bite (Dendroaspis polylepis),” Central African Journal of Medicine, vol. 13, no. 8, pp. 185-186, 1967. View at Google Scholar · View at Scopus
N.-H. Tan, A. Arunmozhiarasi, and G. Ponnudurai, “A comparative study of the biological properties of Dendroaspis (mamba) snake venoms,” Comparative Biochemistry and Physiology. Part C, Comparative, vol. 99, no. 3, pp. 463–466, 1991. View at Publisher · View at Google Scholar · View at Scopus
Chapman D. S., “The symptomatology, pathology, and treatment of the bites of venomous snakes of central and southern Africa,” in Venomous Animals and their Venoms, pp. 463–527, Academic Press, New York, NY, USA, 1968. View at Google Scholar
S. K. Sutherland, Australian Animal Toxins, Oxford University Press, Melbourne, Australia, 1983.
P. S. Hodgson and T. M. Davidson, “Biology and treatment of the mamba snakebite,” Wilderness and Environmental Medicine, vol. 7, no. 2, pp. 133–145, 1996. View at Publisher · View at Google Scholar · View at Scopus
WHO, Guidelines for the Prevention and Clinical Management of Snakebite in Africa, WHO, 2010, http://apps.who.int/iris/handle/10665/204458.
N. F. Moran, W. J. Newman, R. G. Theakston, D. A. Warrell, and D. Wilkinson, “High incidence of early anaphylactoid reaction to SAIMR polyvalent snake antivenom,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 92, no. 1, pp. 69-70, 1998. View at Publisher · View at Google Scholar
S. K. Sutherland, “Antivenoms: better late than never,” Medical Journal of Australia, vol. 2, no. 24, p. 813, 1977. View at Google Scholar · View at Scopus
S. Dwivedi, S. Sheshadri, and C. D'Souza, “Time limit for anti-snake venom administration,” The Lancet, vol. 334, no. 8663, p. 622, 1989. View at Publisher · View at Google Scholar · View at Scopus
P. Malasit, D. A. Warrell, P. Chanthavanich et al., “Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites,” British Medical Journal, vol. 292, no. 6512, pp. 17–20, 1986. View at Publisher · View at Google Scholar · View at Scopus
J. E. Erffmeyer, “Serum sickness,” Annals of Allergy, vol. 56, no. 2, pp. 105–110, 1986. View at Google Scholar · View at Scopus
J. Tibballs, “Premedication for snake antivenom,” Medical Journal of Australia, vol. 160, no. 1, pp. 4–7, 1994. View at Google Scholar · View at Scopus
A. P. Premawardhena, C. E. De Silva, M. M. D. Fonseka, S. B. Gunatilake, and H. J. De Silva, “Low dose subcutaneous adrenaline to prevent acute adverse reactions to antivenom serum in people bitten by snakes: randomised, placebo controlled trial,” British Medical Journal, vol. 318, no. 7190, pp. 1041–1043, 1999. View at Publisher · View at Google Scholar · View at Scopus
H. W. Fan, L. F. Marcopito, J. L. C. Cardoso et al., “Sequential randomised and double blind trial of promethazine prophylaxis against early anaphylactic reactions to antivenom for bothrops snake bites,” British Medical Journal, vol. 318, no. 7196, pp. 1451–1453, 1999. View at Publisher · View at Google Scholar · View at Scopus
I. B. Gawarammana, S. A. Kularatne, W. P. Dissanayake, R. P. V. Kumarasiri, N. Senanayake, and H. Ariyasena, “Parallel infusion of hydrocortisone ± chlorpheniramine bolus injection to prevent acute adverse reactions to antivenom for snakebites: a randomised, double-blind, placebo-controlled study,” Medical Journal of Australia, vol. 180, no. 1, pp. 20–23, 2004. View at Google Scholar · View at Scopus
B. A. Young, C. E. Lee, and K. M. Daley, “Do snakes meter venom?” BioScience, vol. 52, no. 12, pp. 1121–1126, 2002. View at Publisher · View at Google Scholar · View at Scopus
Vihreä tai musta mamba purrut Landvetterissä miestä
Vastamyrkkyä ei Sahlgrensskassa juuri tätä kärmelajia kothaan, joten sitä kiikutettiin Tukholmasta.
Green mamba venom
PubMed
Green mamba venom
PubMed
Best matches for Green mamba venom:
Peptides with in vitro anti-tumor activity from the venom of the Eastern green mamba, Dendroaspis angusticeps (Elapidae).
Conlon JM et al. J Venom Res.
(2014)
Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals.
Petras D et al. J Proteomics.
(2016)
Crystallization of recombinant green mamba ρ-Da1a toxin during a lyophilization procedure and its structure determination.
Maïga A et al. Acta Crystallogr Sect F Struct Biol Cryst Commun.
(2013)
1.
Vanzolini KL, Ainsworth S, Bruyneel B, Herzig V, Seraus MGL, Somsen GW, Casewell NR, Cass QB, Kool J.
Toxicon. 2018 Jul 7;152:1-8. doi: 10.1016/j.toxicon.2018.06.080. [Epub ahead of print]
- PMID:
- 29990530
2.
de la Rosa G, Corrales-García LL, Rodriguez-Ruiz X, López-Vera E, Corzo G.
Amino Acids. 2018 Jul;50(7):885-895. doi: 10.1007/s00726-018-2556-0. Epub 2018 Apr 6.
- PMID:
- 29626299
3.
Brzezicki MA, Zakowicz PT.
CNS Neurol Disord Drug Targets. 2018;17(2):87-97. doi: 10.2174/1871527317666171221110419.
- PMID:
- 29268691
4.
Degueldre M, Echterbille J, Smargiasso N, Damblon C, Gouin C, Mourier G, Gilles N, De Pauw E, Quinton L.
Int J Mol Sci. 2017 Nov 18;18(11). pii: E2453. doi: 10.3390/ijms18112453.
- PMID:
- 29156586
5.
Oyama E, Takahashi H, Ishii K.
Peptides. 2017 Oct;96:31-37. doi: 10.1016/j.peptides.2017.09.004. Epub 2017 Sep 5.
- PMID:
- 28887046
6.
Engmark M, Jespersen MC, Lomonte B, Lund O, Laustsen AH.
Toxicon. 2017 Nov;138:151-158. doi: 10.1016/j.toxicon.2017.08.028. Epub 2017 Sep 1.
- PMID:
- 28867663
7.
Ainsworth
S, Petras D, Engmark M, Süssmuth RD, Whiteley G, Albulescu LO,
Kazandjian TD, Wagstaff SC, Rowley P, Wüster W, Dorrestein PC, Arias AS,
Gutiérrez JM, Harrison RA, Casewell NR, Calvete JJ.
J Proteomics. 2018 Feb 10;172:173-189. doi: 10.1016/j.jprot.2017.08.016. Epub 2017 Aug 24.
- PMID:
- 28843532
8.
Besson T, Lingueglia E, Salinas M.
Neuropharmacology. 2017 Oct;125:429-440. doi: 10.1016/j.neuropharm.2017.08.004. Epub 2017 Aug 9.
- PMID:
- 28802647
9.
Ciolek
J, Reinfrank H, Quinton L, Viengchareun S, Stura EA, Vera L, Sigismeau
S, Mouillac B, Orcel H, Peigneur S, Tytgat J, Droctové L, Beau F, Nevoux
J, Lombès M, Mourier G, De Pauw E, Servent D, Mendre C, Witzgall R,
Gilles N.
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7154-7159. doi: 10.1073/pnas.1620454114. Epub 2017 Jun 19.
- PMID:
- 28630289
10.
Sánchez A, Segura Á, Vargas M, Herrera M, Villalta M, Estrada R, Wu F, Litschka-Koen T, Perry MA, Alape-Girón A, León G.
Toxicon. 2017 Jan;125:59-64. doi: 10.1016/j.toxicon.2016.11.259. Epub 2016 Nov 24.
- PMID:
- 27890775
11.
Engmark M, Andersen MR, Laustsen AH, Patel J, Sullivan E, de Masi F, Hansen CS, Kringelum JV, Lomonte B, Gutiérrez JM, Lund O.
Sci Rep. 2016 Nov 8;6:36629. doi: 10.1038/srep36629.
- PMID:
- 27824133
12.
Lee CY, Huntley BK, McCormick DJ, Ichiki T, Sangaralingham SJ, Lisy O, Burnett JC Jr.
Eur Heart J Cardiovasc Pharmacother. 2016 Apr;2(2):98-105. doi: 10.1093/ehjcvp/pvv040. Epub 2015 Dec 10.
- PMID:
- 27340557
13.
Petras D, Heiss P, Harrison RA, Süssmuth RD, Calvete JJ.
J Proteomics. 2016 Sep 2;146:148-64. doi: 10.1016/j.jprot.2016.06.018. Epub 2016 Jun 16.
- PMID:
- 27318176
14.
Rivera-Torres IO, Jin TB, Cadene M, Chait BT, Poget SF.
Sci Rep. 2016 Apr 5;6:23904. doi: 10.1038/srep23904.
- PMID:
- 27044983
15.
Lauridsen LP, Laustsen AH, Lomonte B, Gutiérrez JM.
J Proteomics. 2016 Mar 16;136:248-61. doi: 10.1016/j.jprot.2016.02.003. Epub 2016 Feb 12.
- PMID:
- 26877184
16.
Guidolin FR, Caricati CP, Marcelino JR, da Silva WD.
PLoS Negl Trop Dis. 2016 Jan 5;10(1):e0004325. doi: 10.1371/journal.pntd.0004325. eCollection 2016 Jan.
- PMID:
- 26730709
17.
Mourier
G, Salinas M, Kessler P, Stura EA, Leblanc M, Tepshi L, Besson T,
Diochot S, Baron A, Douguet D, Lingueglia E, Servent D.
J Biol Chem. 2016 Feb 5;291(6):2616-29. doi: 10.1074/jbc.M115.702373. Epub 2015 Dec 17.
- PMID:
- 26680001
18.
Diochot S, Alloui A, Rodrigues P, Dauvois M, Friend V, Aissouni Y, Eschalier A, Lingueglia E, Baron A.
Pain. 2016 Mar;157(3):552-9. doi: 10.1097/j.pain.0000000000000397.
- PMID:
- 26492527
19.
Báez A, Salceda E, Fló M, Graña M, Fernández C, Vega R, Soto E.
Neurosci Lett. 2015 Oct 8;606:42-7. doi: 10.1016/j.neulet.2015.08.034. Epub 2015 Aug 24.
- PMID:
- 26314509
20.
Kipanyula MJ, Kimaro WH.
J Venom Anim Toxins Incl Trop Dis. 2015 Aug 26;21:32. doi: 10.1186/s40409-015-0033-8. eCollection 2015.
- PMID:
- 26309444
Prenumerera på:
Inlägg (Atom)