Etiketter

söndag 24 februari 2019

Hälyttävääkin tietoa fluorokinoloneista ja niiden sivuvaikutuksista extrasellulaarimatriksiin.

Ruotsin lääkärilehti  #6,2019  antaa varoituksia ja tarkennuskehoituksia fluorokinonien liian  anteliaaseen käyttöön.
Katson mitä PubMed sanoo  fluorokinoneista ja MMP-entsyymeistä.  Suoran assosiaation vastauksia en saa, mutta katson mitä jäi seulaani.

 https://www.ncbi.nlm.nih.gov/pubmed/?term=Fluorokinolones+%3B+MMPs
Showing results for fluoroquinolones mmps. Your search for Fluorokinolones ; MMPs retrieved no results.
 
1.  ENROFLOXACIN , MARBOFLOXACIN
Siengdee P, Euppayo T, Buddhachat K, Chomdej S, Nganvongpanit K.
J Vet Pharmacol Ther. 2016 Oct;39(5):439-51. doi: 10.1111/jvp.12305. Epub 2016 Mar 11.Abstract
Fluoroquinolones (FQs) are frequently used for septic arthritis. Increased antibacterial activity has been associated with mammalian cell cytotoxicity that may increase the risk of developing osteoarthritis. This study compared the direct effects of two different FQs, enrofloxacin (Enro) and marbofloxacin (Mar), on normal primary canine chondrocytes and inflammatory-stimulated chondrocytes, in addition to their administration in combination with hyaluronan (HA). Cell viability, cell apoptosis, s-GAG production, and expression patterns of inflammatory, extracellular matrix (ECM) component and protease genes were measured. Enro co-culturing with HA could modify s-GAG synthesis compared with the negative control group. Co-treatment with both FQs and HA significantly decreased cell viability and induced more total apoptotic cell death compared with the negative control and pre-IL-1β-stimulated group. Enro regulated IL-1β-stimulated cells to overexpress IL-1β, TNF, and MMP3, whereas Mar induced upregulation of PTGS2 and NFKB1 and enhanced the expression of ECM component genes HAS1, COL2A1, and ACAN as well as TIMP1 and MMP9. Simultaneous use of HA with Enro can effectively reduce the expression of IL-1β, TNF, and MMP3 in pre-IL-1β-stimulated chondrocytes. These results suggest the beneficial effects of HA in reducing the adverse effects of Enro treatment at the transcriptional level.
2.   LEVOFLOXACIN
Bai ZL, Chen Q, Yang SD, Zhang F, Wang HY, Yang DL, Ding WY.
Med Sci Monit. 2014 Nov 8;20:2205-12. doi: 10.12659/MSM.892610. Abstract BACKGROUND:
Fluoroquinolones are in wide clinical use as safe and effective antibiotics. Articular cartilage, tendons, and epiphyseal growth plates have been recognized as targets of fluoroquinolone-induced connective tissue toxicity. However, the effects of fluoroquinolones on annulus fibrosus (AF) cells are still unknown. MATERIAL/METHODS: The main objective of this study was to investigate the effects of levofloxacin, a typical fluoroquinolone antibiotic drug, on rat AF cells in vitro. Rat annulus fibrosus (RAF) cells were treated with levofloxacin at different concentrations (0, 10, 20, 30, 40, 60, 80, and 90 μg/ml) and were assessed to determine the possible cytotoxic effects of levofloxacin. Inverted phase-contrast microscopy was used to accomplish the morphological observation of apoptosis of treated cells. Western blot and real-time quantitative RT-PCR (qPCR) was used to explore the expression of active caspase-3 and MMP-3. Flow cytometry was used to measure the apoptotic incidences. RESULTS:
Our study showed that levofloxacin, with concentrations at 30, 60, and 90 μg/ml, induced dose-dependent RAF cell apoptosis and higher expression of caspase-3 and MMP-3. More apoptotic cells were observed by inverted phase-contrast microscopy. Moreover, levofloxacin increased the activity of caspase-3, and it also reduced cell viability with different concentrations ranging from 10 to 80 μg/ml.CONCLUSIONS:
Our study results suggest that levofloxacin has cytotoxic effects on RAF cells, characterized by enhancing apoptosis and reducing cell viability, and indicate a potential toxic effect of fluoroquinolones on RAF cells.
Free PMC Article
3. FLEROXACIN
Fox AJ, Schär MO, Wanivenhaus F, Chen T, Attia E, Binder NB, Otero M, Gilbert SL, Nguyen JT, Chaudhury S, Warren RF, Rodeo SA.
Am J Sports Med. 2014 Dec;42(12):2851-9. doi: 10.1177/0363546514545858. Epub 2014 Aug 20.

Abstract BACKGROUND: Recent studies suggest that fluoroquinolone antibiotics predispose tendons to tendinopathy and/or rupture. However, no investigations on the reparative capacity of tendons exposed to fluoroquinolones have been conducted. HYPOTHESIS: Fluoroquinolone-treated animals will have inferior biochemical, histological, and biomechanical properties at the healing tendon-bone enthesis compared with controls. STUDY DESIGN: Controlled laboratory study. METHODS:  Ninety-two rats underwent rotator cuff repair and were randomly assigned to 1 of 4 groups: (1) preoperative (Preop), whereby animals received fleroxacin for 1 week preoperatively; (2) pre- and postoperative (Pre/Postop), whereby animals received fleroxacin for 1 week preoperatively and for 2 weeks postoperatively; (3) postoperative (Postop), whereby animals received fleroxacin for 2 weeks postoperatively; and (4) control, whereby animals received vehicle for 1 week preoperatively and for 2 weeks postoperatively. Rats were euthanized at 2 weeks postoperatively for biochemical, histological, and biomechanical analysis. All data were expressed as mean ± standard error of the mean (SEM). Statistical comparisons were performed using either 1-way or 2-way ANOVA, with P < .05 considered significant. RESULTS:
Reverse transcriptase quantitative polymerase chain reaction (RTqPCR) analysis revealed a 30-fold increase in expression of matrix metalloproteinase (MMP)-3, a 7-fold increase in MMP-13, and a 4-fold increase in tissue inhibitor of metalloproteinases (TIMP)-1 in the Pre/Postop group compared with the other groups. The appearance of the healing enthesis in all treated animals was qualitatively different than that in controls. The tendons were friable and atrophic. All 3 treated groups showed significantly less fibrocartilage and poorly organized collagen at the healing enthesis compared with control animals. There was a significant difference in the mode of failure, with treated animals demonstrating an intrasubstance failure of the supraspinatus tendon during testing. In contrast, only 1 of 10 control samples failed within the tendon substance. The healing enthesis of the Pre/Postop group displayed significantly reduced ultimate load to failure compared with the Preop, Postop, and control groups. There was no significant difference in load to failure in the Preop group compared with the Postop group. Pre/Postop animals demonstrated significantly reduced cross-sectional area compared with the Postop and control groups. There was also a significant reduction in area between the Preop and control groups. CONCLUSION:
In this preliminary study, fluoroquinolone treatment negatively influenced tendon healing. CLINICAL RELEVANCE:
fleroxacin; fluoroquinolone; rotator cuff repair; tendinopathy; tendon healing
4.   MOXIFLOXACIN   and antimycobacterial drugs  (TBC)
Singh S, Kubler A, Singh UK, Singh A, Gardiner H, Prasad R, Elkington PT, Friedland JS.
Antimicrob Agents Chemother. 2014 Aug;58(8):4657-65. doi: 10.1128/AAC.02141-13. Epub 2014 Jun 2. Abstract
Tuberculosis is characterized by extensive destruction and remodelling of the pulmonary extracellular matrix (ECM). Stromal cell-derived matrix metalloproteinases (MMPs) are implicated in this process and may be a target for adjunctive immunotherapy. We hypothesized that MMPs are elevated in bronchoalveolar lavage fluid of tuberculosis patients and that antimycobacterial agents may have a modulatory effect on MMP secretion.
Concentrations of MMP-1, -2, -3, -7, -8, and -9 were elevated in the bronchoalveolar lavage fluid from tuberculosis patients compared to those in bronchoalveolar lavage fluid from patients with other pulmonary conditions.
There was a positive correlation between MMP-3, MMP-7, and MMP-8 and a chest radiological score of cavitation and parenchymal damage.
Respiratory epithelial cell-derived MMP-3 was suppressed by moxifloxacin, rifampicin, and azithromycin in a dose-dependent manner. Respiratory epithelial cell-derived MMP-1 was suppressed by moxifloxacin and azithromycin, whereas MMP-9 secretion was only decreased by moxifloxacin. In contrast, moxifloxacin and azithromycin both increased MMP-1 and -3 secretion from MRC-5 fibroblasts, demonstrating that the effects of these drugs are cell specific. Isoniazid (INH)  did not affect MMP secretion. In conclusion, MMPs are elevated in bronchoalveolar lavage fluid from tuberculosis patients and correlate with parameters of tissue destruction. Antimycobacterial agents have a hitherto-undescribed immunomodulatory effect on MMP release by stromal cells.
Free PMC Article
5. CIPROFLOXACIN , radioactive exposure, radiation combined  ijury

Kiang JG, Fukumoto R.
Health Phys. 2014 Jun;106(6):720-6. doi: 10.1097/HP.0000000000000108.
Exposure to ionizing radiation alone (radiation injury, RI) or combined with traumatic tissue injury (radiation combined injury, CI) is a crucial life-threatening factor in nuclear and radiological accidents. It is well documented that RI and CI occur at the molecular, cellular, tissue, and system levels. However, their mechanisms remain largely unclear. It has been observed in dogs, pigs, rats, guinea pigs, and mice that radiation exposure combined with burns, wounds, or bacterial infection results in greater mortality than radiation exposure alone. In this laboratory, the authors found that B6D2F1/J female mice exposed to 9.75 Gy ⁶⁰Co-γ photon radiation followed by 15% total body surface area wounds experienced 50% higher mortality (over a 30-d observation period) compared to irradiation alone. CI enhanced DNA damages, amplified iNOS activation, induced massive release of pro-inflammatory cytokines, overexpressed MMPs and TLRs, and aggravated sepsis that led to cell death. In the present study, B6D2F1/J mice that received CI were treated with ciprofloxacin (CIP, 90 mg/kg p.o., q.d. within 2 h after CI through day 21). At day 1, CIP treatment reduced CI-induced γ-H2AX formation significantly. At day 10, CIP treatment not only reduced cytokine/chemokine concentrations significantly, including IL-6 and KC (i.e., IL-8 in humans), but also enhanced IL-3 production compared to vehicle-treated controls. CIP also elevated red blood cell counts, hemoglobin levels, and hematocrits. At day 30, CIP treatment increased 45% survival after CI (i.e., 2.3-fold increase over vehicle treatment). The results suggest that CIP may prove to be an effective therapeutic drug for CI.
Free PMC Article
6.
Kim EY, Shin JH, Song HY, Kim JH, Lee EW, Kim WJ, Shin DH, Lee H.
Endoscopy. 2014 Jun;46(6):507-12. doi: 10.1055/s-0034-1365495. Epub 2014 Apr 25.
We evaluated the efficacy of small interfering RNA (siRNA) in targeting matrix metalloproteinase (MMP-9) to suppress stent-induced tissue hyperplasia in a rat esophageal model. METHODS:
The silencing effect of the candidate siRNA (termed (MMP-9 siRNA) was evaluated in 9 L rat glial cells. Four groups of rats (n = 10, each group) were used: Eso-S, stent insertion only, comparison; Eso-R, stent insertion plus treatment with MMP-9 siRNA complexed with Chol-R9 for delivery, experimental; Eso-P, stent insertion plus treatment with pCMV-luc complexed with Chol-R9, for confirmation of Chol-R9 delivery effect; and Eso-N, no stent insertion and no treatment, controls. All rats were sacrificed at 3 weeks. The therapeutic efficacy of the MMP-9 siRNA/Chol-R9 complex was assessed. RESULTS:
The most potent MMP-9 siRNA was selected. Compared with the Eso-S group, the Eso-R group showed significantly less tissue hyperplasia with a lower percentage of granulation tissue and smaller granulation tissue area, and also significantly lower MMP-9 level. CONCLUSIONS:
MMP-9 siRNA/Chol-R9 is effective for inhibiting stent-induced tissue hyperplasia in a rat esophageal model.
7. QUINOLONES, LEVOFLOXACIN

Wang L, Wu Y, Tan Y, Fei X, Deng Y, Cao H, Chen B, Wang H, Magdalou J, Chen L.
J Appl Toxicol. 2014 Aug;34(8):870-7. doi: 10.1002/jat.2903. Epub 2013 Jul 1.
Quinolones have been reported to induce adverse effects on articular cartilage, tendons and ligaments. However, the effects of quinolones on menisci have not been revealed. The present study was to test the effects of levofloxacin on meniscus cells in vitro. Rabbit meniscus cells were administrated with different concentrations of levofloxacin (0, 14, 28, 56, 112 and 224 µm) for 24 or 48 h, and cell viability and apoptosis were measured. The mRNA expression levels of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, tissue inhibitors of metalloproteinase (TIMP)-1, TIMP-3, Col1a1, Bcl-2, caspase-3 and inducible nitric oxide were analyzed by real-time polymerase chain reaction. Active caspase-3 was detected by immunocytochemical assay, while protein expression levels of MMP-3 and MMP-13 were measured by Western blotting assay. After treatment with levofloxacin for 48 h, cell viability was decreased from dose of 28 to 224 µm in a concentration-dependent manner. An increase of apoptotic cells was observed by flow cytometry. Active caspase-3 protein expression level was also increased. The mRNA level of Bcl-2 was decreased and levels of MMP-1, MMP-3 and MMP-13 in experimental groups were higher than those of controls. The protein levels of MMP-3 and MMP-13 were increased. Moreover, the mRNA levels of TIMP-3 and col1a1 were decreased. A dose-dependent increase of inducible nitric oxide mRNA expression level was also observed. Our results suggested the cytotoxic effects of levofloxacin on meniscus cells through induction of apoptosis and unbalanced MMPs/TIMPs expression. These side effects might result in meniscus extracellular matrix degradation and meniscal lesion. Thus, quinolones should be used cautiously on patients who perform athletic activities or undergo surgical meniscus repair.
apoptosis; extracellular matrix degradation; levofloxacin; matrix metalloproteinases; meniscus cell
8.   OFLOXACIN (OFLOX)
Goto K, Imaoka M, Goto M, Kikuchi I, Suzuki T, Jindo T, Takasaki W.
Toxicol Lett. 2013 Feb 4;216(2-3):124-9. doi: 10.1016/j.toxlet.2012.11.017. Epub 2012 Nov 29.
The effect of body-weight loading onto the articular cartilage on the occurrence of chondrotoxicity was investigated in male juvenile Sprague-Dawley rats given ofloxacin (OFLX) orally once at 900 mg/kg. Just after dosing of OFLX, hindlimb unloading was performed for 0, 2, 4, or 8 h by a tail-suspension method. Animals were sacrificed at 8h post-dose, and then the distal femoral articular cartilage was subjected to a histological examination and an investigation for gene expression of tumor necrosis factor receptor superfamily, member 12a (Tnfrsf12a); prostaglandin-endoperoxide synthase 2 (Ptgs2); plasminogen activator (PA), urokinase receptor (Plaur); and matrix metalloproteinase 3 (Mmp3) by qRT-PCR analysis. As a result, cartilage lesions and up-regulations of these 4 genes that were seen in rats without the tail suspension were not observed in rats with the 8-h tail suspension, and a tendency to decrease in the incidence of the cartilage lesions and the gene expression was noted in a tail-suspension time dependent manner. Our results clearly indicate that body-weight loading onto the cartilage is necessary to induce cartilage lesions and gene expression of Tnfrsf12a, Ptgs2, Plaur, and Mmp3 in juvenile rats treated with OFLX.
9.  LEVOFLOXACIN
Tan Y, Lu K, Deng Y, Cao H, Chen B, Wang H, Magdalou J, Chen L.
Toxicol Appl Pharmacol. 2012 Dec 1;265(2):175-80. doi: 10.1016/j.taap.2012.10.003. Epub 2012 Oct 12.
It is widely accepted that tendon and cartilage are adversely affected with the toxic effects of quinolones. However, the effects of quinolones on synovium have not been deciphered completely. In this study, our main objective was to investigate the effects of levofloxacin, a typical quinolone antibiotic drug, on fibroblast-like synoviocytes (FLSs) in vitro. FLSs of rabbits were treated with levofloxacin at different concentrations (0, 14, 28, 56, 112 and 224 μM). The possible cytotoxic effects of levofloxacin on FLS were determined. Levofloxacin significantly reduced the cell viabilities, gene expression of hyaluronan synthase-2 (HAS-2), and the level of hyaluronan in FLSs. Moreover, levofloxacin-induced concentration-dependent increases of apoptosis and active caspase-3 were determined in this study. Ultrastructural damages of FLSs were observed by electron microscopy. The mRNA expression levels of matrix metalloproteinase (MMP)-3 and MMP-13 were increased in FLSs treated with levofloxacin. In addition, levofloxacin played a role in suppressing the expression of interleukin (IL)-1 and IL-6. Our data suggest that the cytotoxic effects of levofloxacin on FLS were shown to be able to affect cell viability and HA synthesis capacity. The potential mechanisms of the cytotoxic effects may be attributed to the apoptosis and increased expression of MMPs.
10. CIPROFLOXACIN ,  Systemic sclerosis, Lungfibrosis
Bujor AM, Haines P, Padilla C, Christmann RB, Junie M, Sampaio-Barros PD, Lafyatis R, Trojanowska M.
Int J Mol Med. 2012 Dec;30(6):1473-80. doi: 10.3892/ijmm.2012.1150. Epub 2012 Oct 5.
Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. The present study was undertaken to examine the effects of ciprofloxacin, a fluoroquinolone antibiotic implicated in matrix remodeling, on dermal and lung fibroblasts obtained from SSc patients. Dermal and lung fibroblasts from SSc patients and healthy subjects were treated with ciprofloxacin. Western blotting was used to analyze protein levels and RT-PCR was used to measure mRNA expression. The pharmacologic inhibitor UO126 was used to block Erk1/2 signaling. SSc dermal fibroblasts demonstrated a significant decrease in collagen type I mRNA and protein levels after antibiotic treatment, while healthy dermal fibroblasts were less sensitive to ciprofloxacin, downregulating collagen only at the protein levels. Connective tissue growth factor (CCN2) gene expression was significantly reduced and matrix metalloproteinase 1 (MMP1) levels were enhanced after ciprofloxacin treatment to a similar extent in healthy and SSc fibroblasts. Ciprofloxacin induced Erk1/2 phosphorylation, and Erk1/2 blockade completely prevented MMP1 upregulation. However, Smad1 and Smad3 activation in response to TGFβ was not affected. The expression of friend leukemia integration factor 1 (Fli1), a transcriptional repressor of collagen, was increased after treatment with ciprofloxacin only in SSc fibroblasts, and this was accompanied by a decrease in the levels of DNA methyltransferase 1 (Dnmt1). Similar effects were observed in SSc-interstitial lung disease (ILD) lung fibroblasts. In summary, our study demonstrates that ciprofloxacin has antifibrotic actions in SSc dermal and lung fibroblasts via the downregulation of Dnmt1, the upregulation of Fli1 and induction of MMP1 gene expression via an Erk1/2-dependent mechanism. Thus, our data suggest that ciprofloxacin may be an attractive therapy for SSc skin and lung fibrosis.
Free PMC Article
11. NADIFLOXACIN
Hosoda S, Komine M, Karakawa M, Tsuda H, Ohtsuki M.
J Dermatol. 2012 Oct;39(10):855-7. doi: 10.1111/j.1346-8138.2011.01466.x. Epub 2012 Jan 4. No abstract available.
PMID:
22220987
12.  NORFLOXACIN, CIPROFLOXACIN, LOMEFLOXACIN, SPARFLOXACIN, GATIFLOXACIN, MOXIFLOXACIN
Sharma C, Velpandian T, Baskar Singh S, Ranjan Biswas N, Bihari Vajpayee R, Ghose S.
Toxicol Mech Methods. 2011 Jan;21(1):6-12. doi: 10.3109/15376516.2010.529183. Epub 2010 Nov 9.
Matrix metalloproteinases (MMPs) are implicated in regenerative and healing processes in corneal injuries. Based upon reports that topical fluoroquinolones (FQs) may cause perforations during corneal healing by modulating MMPs, this study evaluated the comparative effects of commercially available FQs eye drops on the expression of MMP-2 and MMP-9 in the cornea after ethanol injury. Uniform corneal epithelial defects were created using 70% ethanol in the right eye of the rats (n = 6). The groups studied were (I) sham, (II) normal saline with benzalkonium chloride (NS-BKC), (III) norfloxacin 0.3%, (IV) ciprofloxacin 0.3%, (V) lomefloxacin 0.3%, (VI) sparfloxacin 0.3%, (VII) gatifloxacin 0.3%, and (VIII) moxifloxacin 0.5%. Each treatment was instilled six times/day up to 48 h and rats were sacrificed using excess of anesthesia. The corneas were excised to study the expression of MMP-2 and MMP-9 using gelatin zymography and real-time PCR. All the FQs significantly increased the expression of MMP-2 and MMP-9 as compared to the sham and NS-BKC-treated group. NS-BKC did not show a significant effect on MMPs expression compared to the sham group. Among the studied FQs, ciprofloxacin was observed to exhibit maximal induction of MMP-2 and MMP-9, whereas lomefloxacin exhibited an equivocal effect on both MMP-2 and MMP-9 expression. Findings of the present study demonstrate that topical application of FQs may induce the expression of MMP-2 and MMP-9 in debrided corneal epithelium and, therefore, may delay corneal wound healing. Thus, it can be concluded that selecting a FQ for ophthalmic use having minimal effect on MMPs may impact wound healing in injured or vulnerable cornea.
13. CIPROFLOXACIN,  Achilles tendon
Tsai WC, Hsu CC, Chen CP, Chang HN, Wong AM, Lin MS, Pang JH.
J Orthop Res. 2011 Jan;29(1):67-73. doi: 10.1002/jor.21196.
Ciprofloxacin-induced tendinopathy and tendon rupture have been previously described, principally affecting the Achilles tendon. This study was designed to investigate the effect of ciprofloxacin on expressions of matrix metalloproteinases (MMP)-2 and -9, tissue inhibitors of metalloproteinase (TIMP)-1 and -2 as well as type I collagen in tendon cells. Tendon cells intrinsic to rat Achilles tendon were treated with ciprofloxacin and then underwent MTT (tetrazolium) assay. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and Western blot analysis were used, respectively, to evaluate the gene and protein expressions of type I collagen, and MMP-2. Gelatin zymography was used to evaluate the enzymatic activities of MMP-2 and -9. Reverse zymography was used to evaluate TIMP-1 and -2. Immunohistochemical staining for MMP-2 in ciprofloxacin-treated tendon explants was performed. Collagen degradation was evaluated by incubation of conditioned medium with collagen. The results revealed that ciprofloxacin up-regulated the expression of MMP-2 in tendon cells at the mRNA and protein levels. Immunohistochemistry also confirmed the increased expressions of MMP-2 in ciprofloxacin-treated tendon explants. The enzymatic activity of MMP-2 was up-regulated whereas that of MMP-9, TIMP-1 or TIMP-2 was unchanged. The amount of secreted type I collagen in the conditioned medium decreased and type I collagen was degraded after ciprofloxacin treatment. In conclusion, ciprofloxacin up-regulates the expressions of MMP-2 in tendon cells and thus degraded type I collagen. These findings suggest a possible mechanism of ciprofloxacin-associated tendinopathy.
Free Article
14. CIPROFLOXACIN, NORFLOXACIN, OFLOXACIN,  non-fluorinated quinolone nalidixic acid
Corps AN, Harrall RL, Curry VA, Hazleman BL, Riley GP.
Rheumatology (Oxford). 2005 Dec;44(12):1514-7. Epub 2005 Sep 7.
Fluoroquinolone antibiotics may cause tendon pain and rupture. We reported previously that the fluoroquinolone ciprofloxacin potentiated interleukin (IL)-1beta-stimulated expression of matrix metalloproteinases (MMP)-3 and MMP-1 in human tendon-derived cells. We have now tested additional fluoroquinolones and investigated whether they have a similar effect on expression of MMP-13. METHODS: Tendon cells were incubated for two periods of 48 h with or without fluoroquinolones and IL-1beta. Total ribonucleic acid (RNA) was assayed for MMP messenger RNA by relative quantitative reverse transcriptase polymerase chain reaction, with normalization for glyceraldehyde-3-phosphate dehydrogenase mRNA. Samples of supernatant medium were assayed for MMP output by activity assays. RESULTS: MMP-13 was expressed by tendon cells at lower levels than MMP-1, and was stimulated typically 10- to 100-fold by IL-1beta. Ciprofloxacin, norfloxacin and ofloxacin each reduced both basal and stimulated expression of MMP-13 mRNA. In contrast, ciprofloxacin and norfloxacin increased basal and IL-1beta-stimulated MMP-1 mRNA expression. Both the inhibition of MMP-13 and the potentiation of MMP-1 expression by fluoroquinolones were accompanied by corresponding changes in IL-1beta-stimulated MMP output. The non-fluorinated quinolone nalidixic acid had lesser or no effects. CONCLUSIONS:
Fluoroquinolones (FQs)  show contrasting effects on the expression of the two collagenases MMP-1 and MMP-13, indicating specific effects on MMP gene regulation.
15. CIPROFLOXACIN, LEVOFLOXACIN
Sendzik J, Shakibaei M, Schäfer-Korting M, Stahlmann R.
Toxicology. 2005 Aug 15;212(1):24-36.
Antimicrobial therapy with fluoroquinolones can be associated with tendinitis and other tendon disorders as an adverse reaction associated with this class of antimicrobials. Here we investigated aspects of the mechanism of quinolone-induced tendotoxicity in human tenocytes focussing mainly on the question whether fluoroquinolones may induce apoptosis. Monolayers of human tenocytes were incubated with ciprofloxacin or levofloxacin at different concentrations (0, 3, 10, 30 and 100mg/L medium) for up to 4 days. Ultrastructural changes were studied by electron microscopy, and alterations in synthesis of specific proteins were determined using immunoblotting. At concentrations, which are achievable during quinolone therapy, 3mg ciprofloxacin/L medium significantly decreased type I collagen; similar changes were observed with 3mg ciprofloxacin or 10mg levofloxacin/L medium for the beta(1)- integrin receptors. Effects were intensified at higher concentrations and longer incubation periods. Cytoskeletal and signalling proteins, such as activated shc or erk 1/2, were significantly reduced by both fluoroquinolones already at 3mg/L. Furthermore, time- and concentration-dependent increases of matrix metalloproteinases as well as of the apoptosis marker activated caspase-3 were found. Apoptotic changes were confirmed by electron microscopy: both fluoroquinolones caused typical alterations like condensed material in the nucleus, swollen cell organelles, apoptotic bodies and bleb formation at the cell membrane. Our results provide evidence that besides changes in receptor and signalling proteins apoptosis has to be considered as a final event in the pathogenesis of fluoroquinolone-induced tendopathies.
16.CIPROFLOXACIN  (Ciloxan, Alcon), OFLOXACIN ( Ocuflox, Allergan), LEVOFLOXACIN  (Quixin, Santen)
Reviglio VE, Hakim MA, Song JK, O'Brien TP.
BMC Ophthalmol. 2003 Oct 6;3:10.
Matrix metalloproteinases play an important role in extracellular matrix deposition and degradation. Based on previous clinical observations of corneal perforations during topical fluoroquinolone treatment, we decided to evaluate the comparative effects of various fluoroquinolone eye drops on the expression of matrix metalloproteinases (MMPs) in cornea. METHODS:
Eighty female Lewis rats were divided into two experimental groups: intact and wounded corneal epithelium. Uniform corneal epithelial defects were created in the right eye with application of 75% alcohol in the center of the tissue for 6 seconds. The treatment groups were tested as follows: 1) Tear drops: carboxymethylcellulose sodium 0.5 % (Refresh, Allergan); 2) Ciprofloxacin 0.3% (Ciloxan, Alcon); 3) Ofloxacin 0.3%(Ocuflox, Allergan); 4) Levofloxacin 0.5%(Quixin, Santen). Eye drops were administered 6 times a day for 48 hours. Rats were sacrificed at 48 hours. Immunohistochemical analysis and zymography were conducted using antibodies specific to MMPs-1, 2, 8 and 9. RESULTS: MMP-1, MMP-2, MMP-8 and MMP-9 expression were detected at 48 hrs in undebrided corneal epithelium groups treated with the topical fluoroquinolones. No statistical difference was observed in quantitative expression of MMPs among ciprofloxacin 0.3%, ofloxacin 0.3%, levofloxacin 0.5%. When the artificial tear group and the fluoroquinolone groups with corneal epithelial defect were compared, increased expression of MMPs was observed as a result of the wound healing process. However, the fluoroquinolone treated group exhibited high statistically significantly levels of MMPs expression. CONCLUSIONS:
Our study provides preliminary evidence that topical application of fluoroquinolone drugs can induce the expression of MMP-1, MMP-2, MMP-8 and MMP-9 in the undebrided corneal epithelium compared to artificial tear eye drops.
Free PMC Article
17. CIPROFLOXACIN,

Arthritis Rheum. 2002 Nov;46(11):3034-40.
To determine whether the fluoroquinolone antibiotic ciprofloxacin, which can cause tendon pain and rupture in a proportion of treated patients, affects the expression of matrix metalloproteinases (MMPs) in human tendon-derived cells in culture.  METHODS:
Cell cultures were derived from 6 separate tendon explants, and were incubated in 6-well culture plates for 2 periods of 48 hours each, with ciprofloxacin (or DMSO in controls) and interleukin-1beta (IL-1beta), alone and in combination. Samples of supernatant medium from the second 48-hour incubation were assayed for MMPs 1, 2, and 3 by Western blotting. RNA was extracted from the cells and assayed for MMP messenger RNA (mRNA) by semiquantitative reverse transcription-polymerase chain reaction, with normalization for GAPDH mRNA. RESULTS:
Unstimulated tendon cells expressed low or undetectable levels of MMP-1 and MMP-3, and substantial levels of MMP-2. IL-1beta induced a substantial output of both MMP-1 and MMP-3 into cell supernatants, reflecting increases (typically 100-fold) in MMP mRNA, but had only minor effects on MMP-2 expression. Ciprofloxacin had no detectable effect on MMP output in unstimulated cells. Preincubation with ciprofloxacin potentiated IL-1beta-stimulated MMP-3 output, reflecting a similar effect on MMP-3 mRNA expression. Ciprofloxacin also potentiated IL-1beta-stimulated MMP-1 mRNA expression, but did not potentiate the output of MMP-1, and had no significant effects on MMP-2 mRNA expression or output. CONCLUSION:
Ciprofloxacin can selectively enhance MMP expression in tendon-derived cells. Such effects might compromise tendon microstructure and integrity.
Free Article
18. ENROFLOXACIN
Davenport CL, Boston RC, Richardson DW.
Am J Vet Res. 2001 Feb;62(2):160-6.
To investigate the effects of enrofloxacin and magnesium deficiency on explants of equine articular cartilage. SAMPLE POPULATION:
Articular cartilage explants and cultured chondrocytes obtained from adult and neonatal horses. PROCEDURE: Full-thickness explants and cultured chondrocytes were incubated in complete or magnesium-deficient media containing enrofloxacin at concentrations of 0, 1, 5, 25, 100, and 500 microg/ml. Incorporation and release of sulfate 35S over 24 hours were used to assess glycosaminoglycan (GAG) synthesis and degradation. An assay that measured binding of dimethylmethylene blue dye was used to compare total GAG content between groups. Northern blots of RNA from cultured chondrocytes were probed with equine cDNA of aggrecan, type-II collagen, biglycan, decorin, link protein, matrix metalloproteinases 1, 3, and 13, and tissue inhibitor of metalloproteinase 1. RESULTS:
A dose-dependent suppression of 35S incorporation was observed. In cartilage of neonates, 35S incorporation was substantially decreased at enrofloxacin concentrations of 25 mg/ml. In cartilage of adult horses, 35S incorporation was decreased only at enrofloxacin concentrations of > or =100 microg/ml. Magnesium deficiency caused suppression of 35S incorporation. Enrofloxacin or magnesium deficiency did not affect GAG degradation or endogenous GAG content. Specific effects of enrofloxacin on steady-state mRNA for the various genes were not observed. CONCLUSION AND CLINICAL RELEVANCE:
Enrofloxacin may have a detrimental effect on cartilage metabolism in horses, especially in neonates.


Inga kommentarer:

Skicka en kommentar