Metalloproteinaasit

Etiketter

  • -10
  • -11)
  • . sAPP:n normaali pilkkoja
  • (Aortta9 aneurysma .
  • <osteonektiini
  • 2
  • 3. (MMP-3
  • 4 artikkelia
  • 4 blade propel
  • 4lehti-propellineni
  • A Disintegrin And Metalloproteases
  • Abeeta
  • ABl2
  • ACE1
  • ACEI
  • AD
  • ADA10 geeniuutiset
  • ADAM
  • ADAM- molekyyleistä
  • ADAM-15
  • ADAM-17
  • ADAM-17 inhibiittori
  • ADAM-31
  • ADAM-33
  • ADAM-proteiiniperhe
  • ADAM10
  • ADAM10 alfasekretaasi
  • ADAM10 ja ADAM17 degradomi
  • ADAM17
  • ADAM17 (2p.25.1)
  • ADAM17 (ACE2 eli TACE)
  • ADAM17 (TACE)
  • ADAM17 inhibiittorikehittely
  • ADAM17 sheddaasi
  • ADAM17 substraatteja yli 80
  • ADAM18
  • ADAM19
  • ADAM20
  • ADAM22
  • ADAM27
  • ADAM28
  • ADAM30
  • ADAM33
  • ADAM9
  • ADAMs
  • ADAMTS
  • ADAMTS & SVMPs
  • ADAMTS- proteinaasit ja 4 alaryhmää
  • ADAMTS-13 ja sen vasta-aineet diagnostiikassa
  • ADAMTS1
  • ADAMTS13
  • ADAMTS13 entsyymin puute
  • ADAMTS15
  • ADAMTS9 (Diabetes mellitus T2DM)
  • Aggrekanaasi ja artriitti
  • AGTR1 ( angiotensiinin II:n pääreseptori)
  • AGTR2
  • Aivokammio
  • Aivotutkimusken edistyksistä
  • Aktiivi D-vitamiini
  • alendronate
  • alfa-2M.
  • alfa2-makroglobuliini
  • alfasekretaasi
  • ALL
  • Amiloridi
  • AML
  • Angiogeneesin säätely
  • angiostatiinin kaltaiset proteiinit
  • Angiotensiini II
  • Angiotensiini II ja maksavaurio
  • Angiotensiini-II
  • Angiotensiinin pilkkoutuminen
  • Angiotensiinireseptori AT2
  • anti-angiogeneettinen vaikutus
  • antiangiogeeni
  • antiangiogeeninen
  • antioksidatiivinen polymeerikapselitekniikka
  • antiparasiittinen
  • Antisheddaasistrategian lääkekehittelyn vaihe 2016
  • Aortta aneurysma . Suomennos.
  • Aortta-aneurysma
  • APOBEC3G
  • Apoptoosiresistenssi
  • APP
  • APP prosessointi
  • Aprotiniini
  • astasiiniperhe
  • astmamuutokset
  • Autofagosomibiogeneesi 2013
  • Autoimmuuni myokardiitti
  • avainentsyymi RAASjärjestelmässä
  • avainlinkki luonnollisen ja adaptiivisen immuniteetin välillä
  • Aviojen valkea aines
  • Bakteeriproteinaasit ja ihmisen MMP
  • BDKRB1.
  • BDKRB2
  • betakaroteeni
  • BM-40
  • Bradykiniinireseptori B1
  • Bradykiniinireseptori B2
  • BRC5 geeniperhe
  • BSG
  • C3-C5
  • Ca mammae c. metast.
  • CALLA
  • CAM
  • CD10
  • CD135
  • CD147
  • CD156B
  • CD44
  • Cecropin
  • Celecoxib( COX-2 estäjä)
  • CF
  • cGAS-c-GAMP-STING signaalitie
  • CMT2T
  • COPD
  • COPD (KOL)
  • COPD(KOL)
  • cornean toistuva erosio
  • COVID-19 ja ADAMTS13 interaktiosta
  • Covid-19 taudin vakavuusasteet ja ADAMTS-13 aktiviteetin alenema
  • CPEB1(15q25.2)
  • CRC
  • Crosslinking
  • CSVP
  • Cu-metalloproteiinit
  • Cys array domain
  • Deathstalker
  • dementiadiagnostiikka
  • Dendriittisolujen kehitys
  • Dendroaspis angusticeps
  • dendroaspis polylepsis
  • Dengue
  • Dengue ja MMP-inhibiittori
  • Diabetes
  • Diabetes Egyptin tavallisin tauti. Kansanlääkkevaikutuksesta
  • Disintegriini
  • disintegriini ja MMP
  • disintegriinin ja MMP
  • DLG4
  • Doxysykliinin MMPi vaikutus
  • dsDNA sensori
  • Dynaaminen luu ja MMP
  • E-vitamiini
  • ebola
  • Ebola gp vaimennussäätää tärkeitä pintamolekyylejä
  • Ebolan strategia; kysteiiniproteaasi-inhibiittori
  • EBOV
  • EBOV shed GP
  • EBOV GP
  • EC
  • EC 3.4.24.-
  • ECM
  • ECM and Ebola
  • ECM ja MMP proteiinit verkostona
  • ECM kypsyminen
  • Efriini-A3
  • Efriini-A5
  • EIPA
  • ELA2 (19p13.3)
  • elastaasi
  • Elastaasi ja aortta-aneurysma
  • Ellen Hanssonin väitöskirja sta
  • Ellen Hanssonin väitöskirjasta
  • Emfyseema
  • EMMPRin
  • EMT
  • EMT-TF
  • endometrioosi
  • endoteelisolu
  • Enterosyytti. Suolistohaavan paraneminen
  • ER ja MMP-1
  • ERK1/2
  • erythroid promoting activity
  • esim serralysiinit
  • Euroopan tavalliset kyyt ja niiden puremat (2021)
  • extrasellulaarinen matrix
  • extrasellulaaristen MMPs indusoija
  • FAP
  • Fav-Afrique
  • Fibrinolyysi
  • Fibronektiini
  • FIH ja Mint3 ja MT1-MMP rekrytoituvat legionellaa sisältäviin vakuoleihin (LCV)
  • Flt
  • Flt-3 L
  • Flt3
  • Flt3 estäjä
  • Flt3 geeni
  • Flt3L MMP
  • Fluorokinoloneista
  • FN
  • Furiini
  • FURIINI ja EBOV GP-prosessointi
  • Fytiini
  • G12perheen proteiinit
  • Geeni CD151
  • Geeni CD44
  • Geeni FUR 15q26.1
  • geenin sijainti
  • gelatinaasi
  • Gelatinaasi-inhibiittori thiirane
  • H2O2
  • Halofuginoni
  • hematopoieettisen solun säätely
  • Hemopexiinitoistot
  • Hemopxeiinin kaltainen superperhe
  • Hepatoma
  • HIF1
  • HMP
  • HNE
  • Hoitamaton Keliakia
  • Horst Ibelgaufts 1995
  • Huggormsbett
  • human collagenase inhibitor
  • hyaluronaanireseptori
  • Hypertensio
  • Hypoksian indusoima tekijä 1
  • IBD
  • Influenssavirusenkefalopatia
  • Integriinit
  • Invasiivisuus
  • IPF
  • IRF5
  • ISBT 023 Indian veriryhmä
  • ISBT 024
  • ISBT 025
  • isäntäsolun katepsiini B
  • iTTP ja hTTP.
  • K2 vitamiini
  • kallikreiini-kiniinisysteemi ( MMP-3 aktivaatio)
  • Kallikreiinigeenit ja reseptorit
  • katepsiini L
  • katepsiini-B
  • katepsiini-inhibiittori
  • Katepsiinit
  • Keltainen skorpioni
  • Keramidisyntaasi
  • Kertausta MMP asiasta
  • keuhkoahtauma
  • keuhkofibroosi
  • Keuhkokarsinooma
  • Keuhkonsiirto ja bronchiolitis obliterans ja MMP-9 Neutrofiilielastaasi
  • Keuhkonsiirto ja bronchiolitis obliterans 20 artikkelia
  • Keuhkosyöpä
  • keuhkosyöpä ja CPEB4
  • keuhkovaurio
  • Kiniinireseptorit B1 ja B2
  • Kiniinirreseptori B2.
  • Koagulaatiosysteemi ja plasminerginen systeemi
  • kollagenaasi
  • Kontrolloimaton ECM proteolyysi
  • Kr. 9q34
  • Kupari
  • Kupari ja rintasyöpä
  • Kutaani syst. skleroosi ja MMP-kaskadi
  • Kysteiiniproteaasit ja niiden inhibiittorit
  • Kyyn hemorhaginen metalloproteinaasi HMP
  • Kyyn myrkyn toiseksi suurin entsyymiryhmä SVTLEs
  • Kyyn pureman hoito
  • Kyynpurema
  • Kyynpuremasta
  • käyttöindikaation tarkistusta
  • Käärmeen myrkyssä voi olla maan tomusta niitä radioaktiivisiakin ainita
  • Käärmeenmyrkky
  • Käärmeenmyrkyn hyaluronidaasit SVHYA vertailussa. SVAPs.
  • Käärmeenmyrkyn vasta-aineiden tärkeys
  • Käärmeenpureman vaaroista (Dödliga ormbett) Käärmeseerumin valmistuksesta
  • Käärmeenpuremien yleisyys
  • Lapsen kyynpurematapaus
  • Lisätietoa matrixmetalloproteinaasesita
  • liukoinrn SEMA4D
  • LOX entsyymi
  • LPS ja sydämen dysfunktio
  • Lubricin
  • luuytimen seriiniproteaasi
  • Lymfoma
  • Lysyylioksidaasi
  • Lyyn myrkky
  • M Erlandssonin väitöskirja nivelreumasta
  • M13 perhe
  • Major Sheddases ADAM10 ja ADAm17
  • Makrofagi
  • Makrofagi sekretomi
  • Makrofagielastaasi
  • Maksakirroosin parantaminen
  • maksametastaasi
  • maligniteetti
  • mamban myrkystä
  • Mamban puremasta Dendroapsis
  • Marimastat
  • Matriksin metalloproteinaasi MMP-8 ja kudosvälitilan proteaasi-inhibiittori TIMP-1
  • Matrilysiinidomeeni
  • matrixmetalloproteinaasien kudosestäjiä
  • MDC-perhe
  • MDM2
  • medullasiini
  • Mepriinit
  • Meprin beta
  • MEROPS database
  • mestastaasi
  • metargidin
  • metastasoituminen
  • METH1
  • metsinkiini superperhe
  • Metzincin superfamily
  • METZINCIN superperhe
  • Metzinkiiniperheen alajakoa
  • Metzinkiinisuperperhe
  • Metzinkiinit ja seitsemän alaryhmää
  • Michael Jonssinin väitöskirja
  • Michael Jonssonin väitöskirja
  • miR-29
  • Miten legionella nitistää Syntaxiini17 proteiinin ja samalla kumoaa fagolysosomitietä
  • MME(3q25.2) Beprilysiini
  • MMP
  • MMP AND autophagosome
  • MMP inhibiittoreita 20 000 uutta
  • MMP interaktio
  • MMP ja demyelinisoiva tauti
  • MMP ja Lymen neuroborrelioosi
  • MMP ja TIMP perheet genomissa
  • MMP kaskadi
  • MMP kirjosta
  • MMP luettelo ja substaatit
  • MMP osuus Abeeta4 biogeneesissä.
  • MMP ovat sinkistä riippuvia endopeptidaaseja
  • MMP perheen biologinen rooli ja kriittinen tasapaino
  • MMP rakennekuva
  • MMP rooli gliomassa. Onko vastavaikuttajia?
  • MMP- kaskadi iskemisessä halvauksessa
  • MMP-1
  • MMP-11 ja rintasyöpä
  • MMP-12
  • MMP-12 inhibittori
  • MMP-12( gelatinaasi A)
  • MMP-13 (Kr.11q22.2)
  • MMP-15
  • MMP-15 (MT-MMP-2)
  • MMP-19
  • MMP-2
  • MMP-2 (Gelatinaasi-A)- inhibiittoreista
  • MMP-2 estäjä
  • MMP-2. MMP-9
  • MMP-28
  • MMP-28 (17q21.1) epilysiini
  • MMP-3
  • MMP-3 ja ADAMTS-5
  • MMP-3 ja osteoartriitti
  • MMP-3 pilkkoo A2AP:tä
  • MMP-7
  • MMP-8
  • MMP-9
  • MMP-9 inhibitio
  • MMP-9 suppressio
  • MMP-9 inhibiittori minosykliinihydrokloridi
  • MMP-9 inhibitio
  • MMP-9 ja melatoniini
  • MMP-ja MT-MMP-substraateista ja inhibiittoreista
  • MMP-järjestelmä keuhkofibroosissa
  • MMP-kirjo ja Ca Mammae riski
  • MMP-perhe
  • MMP1 (11q22.3)
  • MMP2
  • MMP8-fuusioproteiini
  • MMP9
  • MMPI
  • MMPs
  • MMPs in Ca mammae
  • MMPs Lymen neuroborrelioosissa
  • MMPs reseptori CD44
  • Monosyytti
  • Monosyytti ja MMP
  • Morbilli ja MMP
  • MT-MMP
  • MT.MMP
  • MT1-MMP
  • MT1-MMP substraatti
  • MT1-MMP kirjot primäärisyövässä ja niiten ihometastaasissa
  • MTs
  • MUC-1
  • Musiini 1 MUC1
  • N-cadheriini
  • Navigate
  • NCAM
  • NEP
  • Neuroligiini-1
  • Neutrofiilielastaas
  • neutrofiilielastaasi
  • NHE-I
  • Nikamavälilevydegeneraatiomalli
  • Nikotiini. LPS
  • NISBD
  • NISBD1
  • nivelneste
  • Nivelreuma
  • Nivelreuman tapahtumat nivelrustossa ja luussa . Mats Dehlinin väitöskirja
  • nivelruston sorvaus
  • normaali sAPP
  • NOTCH
  • Notcsignaloinnin estäjä
  • NSCLC
  • olmesartan
  • Onkolyyttinen tuhkarokkovirus
  • organisaatio
  • osteoblasti
  • Osteonektiini
  • Oxdordlista
  • p53
  • pahanlaatuinen tauti
  • PAI-1:ta . uPA:ta
  • Periostat
  • Perisyytti
  • PGE(2=
  • Pinttynyt maksakirroosi
  • Plasmiini(MMP-3 kaskadi
  • Plasmin
  • Plasminogeeni
  • Plasminogeeni-plasmiini ja syöpä
  • Plasminogeeni-plasmiini- peräinen ANGIOSTATIINI
  • Pohdittavaksi glu-css antiporter glioomassa
  • Pravastatiinin
  • PRCGVPDS-gluthatiolation
  • Pre-angiotensinogeeni tarvitsee reniinin.
  • PRG4 1q25-q31
  • PRMT
  • pro-MMP7
  • prolyl-tRNA syntaasin estäjä
  • proproteiinikonvertaasi
  • proteaasi-antiproteaasiepätasapaino keuhkofibroosissa
  • proteiiniarginiini metyylitransferaasi
  • proteoglykaani
  • proteomitekniikka
  • Proteus ja diabetes.
  • Prtoeiini C aPC activate gelatinase A
  • Pseudpmpnas
  • Punkin syljen merkitys verirqavinnon hankinnassa
  • Punkkien syljen metalloproteinaasit
  • RA
  • Reseveratroli ja MMP-13suppressio?
  • resveratroli
  • Rintasyöpä
  • rusto
  • S100A4 metastasiini
  • Samuel Bagster 1875
  • SARA
  • SCA43. membraanimetalloendopeptidaasi
  • SEMA3C
  • SEMA3C semaforiini-3C
  • SEMA4D
  • Semaforiini
  • seriiniproteaasi NE
  • Serralysiiniperhe Virulenssiproteiineja
  • Serralysiinistä vuonna 1999
  • Serralysin 2020
  • Sheddase
  • signalointitiet
  • Sinkkiproteiini
  • SIRT-1
  • SLPI proteaasi-inhibiittori
  • SMAD
  • SMURF
  • SNIP
  • Solu Adheesio Molekyyli
  • Sorafenib (VEGFR estäjä)
  • Sorvareiden ja Kähyjen Klaani MA
  • SPARC
  • STAT3
  • STAT3signaloinnin inhibitio syöpäterapiassa
  • Stimulator of Interferon Genes
  • STING
  • stromelysiini
  • stromelysiini-1
  • Stromelysiinit 1
  • suhde MMP kaskadiin päin
  • sulfatidi
  • Sunitinib
  • Suomalainen väiotöskirja
  • Suomalaisia artikkeleita
  • suonituppi
  • surviviini
  • Surviviini inhibitio
  • Surviviini nuclear shuttle protein
  • SVD
  • SVMP
  • Syndekaani-4
  • sytokiiniverkosto
  • syöpäsolun migroituminen
  • T1DM ja MMPs
  • TACE
  • TACE/ADAM17
  • TAFI
  • tetraspaniini
  • Tetrasykliinijohdannainen kollagenaasi-inhibiittorina
  • TGFbeta/SMAD signalointi
  • TIMP
  • TIMP luettelo ja tehtävät
  • TIMP- 1 väitöskirjoissa
  • TIMP-1
  • TIMP-1 metabolisessa oireyhtymssä
  • TIMP-1 ei ole vain MMP-inhibiittori
  • TIMP-1 geeni X kromosomissa
  • TIMP-1 geeni.
  • TIMP-1 ja glioblastooma
  • TIMP-2
  • TIMP-3
  • TIMP-4/CD63 ja gliooma. Astrosyyttinen fenotyyppi
  • TIMP1 geeni
  • TIMP3 ja SIRTUIINI
  • TIMPs
  • TNFalfa
  • TNFalfa konvertaasi
  • TOPA
  • tPA
  • tPA /plasminogeeni axisd
  • Treenaus ja obesitas-aspekti
  • Trombomoduliini ja MMP
  • TTP
  • Tulehdus ja oksidatiivinen strtessi aktivoi proMMP
  • Tupakansavu asetyloi TIMP1. SIRT1 deasetyloi TIMP1. TIMP/MMP9 tasapaino
  • Tutkimuksia MMP klusterista keuhkofibroosissa (IPF)
  • Tutukimustyö
  • UC
  • uPA
  • uPA inhibiittori
  • uPAR
  • urokinaasi
  • UTE-1
  • uUusi asenne fluorokinoloneihin 2019
  • VaD
  • vaiutaa angiostatiinin syntyä
  • Valtimoseinämän jäykkyys
  • Veriaivoeste
  • veriryhmä OK
  • Veriryhmä Raph
  • Vipera Berus myrkkyjen tutkimus
  • vitronektin
  • Voiko MMP-kaskadia rauhoittaa
  • VWF
  • vWF pilkkova proteaasi
  • Välilevy
  • Wikipedian yleiskatsaus MMPs 2017
  • ZapA metalloproteaasi on IgA.ta hajoittava
  • ZEB
  • Zinkiinit
  • ZnMc_MMP

fredag 27 oktober 2017

Suomalaisia artikkeleita matrixmetalloproteinaaseista löytyy netistä

Sökresultat

Tässä on hyvä artikkeli, joka sijoittaa  MMP:n luun dynaamisessa aineenvaihdunnassa  relativistisesti oikeaan kohtaansa. 

[PDF]Luun aineenvaihdunnan biokemialliset mittarit - Luustoliitto

www.luustoliitto.fi/.../Koivula_Luun_aineenvaihdunnan_bioke...
Översätt den här sidan
22 maj 2014 - todentamisessa. • Hajoaminen ei liity luun uusiutumissykliin. ; Synteesi seuraa perässä tai on inhiboitunut. • Matrixmetalloproteinaasit (MMP:t).

Luun aineenvaihdunnan biokemialliset mittarit: mitä, miksi ja milloin ...

docplayer.fi/11179290-Luun-aineenvaihdunnan-biokemialliset...
Översätt den här sidan
Matrixmetalloproteinaasit (MMP:t) aktivoituvat. -> ICTP >> CTX multippeli myelooma nivelreuma Luustometastaaseissa usein sekä hajoaminen että synteesi.
Upplagd av Kirjallisuutta kl. 23:04 Inga kommentarer:
Skicka med e-postBlogThis!Dela på XDela på FacebookDela på Pinterest
Etiketter: Dynaaminen luu ja MMP, Suomalaisia artikkeleita

Lymen neuroborrelioosi ja liquorin MMP-kirjo

https://www.ncbi.nlm.nih.gov/pubmed/?term=TIMP-1+in+Lyme+neuroborreliosis

J Neurol Neurosurg Psychiatry. 2000 Mar;68(3):368-71.

Upregulation of matrix metalloproteinase-9 in the cerebrospinal fluid of patients with acute Lyme neuroborreliosis.Kirchner A1, Koedel U, Fingerle V, Paul R, Wilske B, Pfister HW

Abstract

It was investigated
 (1) whether metalloproteinase-9 (MMP-9), MMP-3, and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1, the natural tissue inhibitor of MMP-9) are increased in the CSF of patients with Lyme neuroborreliosis and
(2) whether macrophages can express MMP-9 when stimulated with Borrelia burgdorferi. Zymography showed MMP-9 activity in 26 of 31 (84%) CSF samples from patients with acute stage 2 Lyme neuroborreliosis, but not in 20 controls with non-inflammatory neurological disorders.

 Activity of MMP-2 was detected in all CSF samples in both patients with neuroborreliosis and controls, suggesting a constitutive release of MMP-2.

Using enzyme linked immunosorbent assay (ELISA) MMP-3 (which can activate MMP-9) was detected in low concentrations in the CSF of 13 of 29 patients with neuroborreliosis, but not in controls.

TIMP-1 was increased twofold in CSF samples from patients with neuroborreliosis in comparison with the controls.

MMP-9 activity was induced in vitro in a mouse macrophage cell line (RAW 264.7) when stimulated with two different genospecies of B burgdorferi (B garinii, B afzelii ). This MMP-9 activity was reduced in a dose dependent manner when macrophages stimulated with B burgdorferi were coincubated with NF-kappaB SN50, a cell permeable peptide which inhibits the translocation of NF-kappaB into the nucleus of stimulated cells.

 The data show that (1) MMP-9 activity is present in the CSF of patients with neuroborreliosis,
 (2) macrophages stimulated with B burgdorferi are a possible source of MMP-9 increase, and
(3) activation of NF-kappaB may play a part in the upregulation of MMP-9 by B burgdorferi.
PMID:
10675223
PMCID:
PMC1736835
[Indexed for MEDLINE]
Free PMC Article
Upplagd av Kirjallisuutta kl. 18:50 Inga kommentarer:
Skicka med e-postBlogThis!Dela på XDela på FacebookDela på Pinterest
Etiketter: MMP-2, MMP-3, MMP-9, MMPs Lymen neuroborrelioosissa, TIMP-1

Matrixmetalloproteinaasit aivoselkäydinnesteessa Lymen neuroborrelioosissa

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/jid/177/2/10.1086/514198/2/177-2-401.pdf?Expires=1509205540&Signature=SO8LgKi3Olkq0tyYQbwAjps1HLB5~PH3NmJJ5JC522Th8WKFBgNHjBQRhEA2ldfe0z5pQ30lOijFnNw8cbeZ7EE0jyfSImk9MtoZbaHOxcDiT1ZR5BHbkWx4hCBW12h2hWE78jlFHHHxFb15SD061u8kCOf~o9DqxOl~dML7KvNYmph~RUaRGYovCD0Ry4RHBZsw4edXqq~V-TAc-dGFoZE0fDnovtQzcLkYCXxLWpGtjFjAfYQGfylGAZB6eRo820vCDfHpdQ41JMASk~MgGNk7UhQS5eMmDDgxrqOqxozDqDXrVLKK4s9CjjEiU-iiKvHIAFOldyiG6WqBUP0rfQ__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
Sitaattia  lähteestä:

MMPs in Cerebrospinal Fluid of patients with Lyme neuroborreliosis.

Perides G, Charness ME, Tanner L, Péter O, Satz N, Steere AC, Klempner MS. (1997)

Neurologic manifestations of Lyme disease include meningitis, encephalopathy and cranial and peripheral neuropathy. There are no sensitive markers for neuroborreliosis, and diagnosis is often based on clinical presentation and cerebrospinal fluid (CSF) abnormalities, including intrathecal antibody production- matrix metalloproteinase (MMP) activity in CSF was compared in patients with neuroborreliosis, patients with diverse neurological disorders, and healthy controls. The CSF of 17 of 18 healthy subjects and 33 of 37 patients with neurologic symptoms and normal CSF and imaging studies contained only MMP2. 
The CSF of several patieants with neurologic disorders contained MMP2, MMP9, and gelatinolytic activity at 130 and 250 kDa. The 150-kDa MMP was found without the 92-kDa MMP9 in the CSF of 11 (79%) of 14 patients with neuroborreliosis and only 7 ( 6%) of 118 control patients (P under.001). This pattern of CSF gelatinase activity may be a useful marker of Lyme disease.

Patients usually have cerebrospinal fluid (CSF) abnormalities, incl. elevated total protein, intrathecal antibody production to B. Burgdorferii, or a positive polymerase chain reaction (PCR) test for spirochetal DNA. In addition, increased amounts of neurofilaments and glial fibrillary acidic protein degradation products have been noted in CSF. The polyneuropathy is usually accompanied by spinal radicular pain or peripheral dysesthesias, and electromyography (EMG) often shows a diffuse axonal polyneuropathy.

MATRIX METALLOPROTEINASES (MMPs) are enzymes that contain zinc in their active center and require Ca2+ for proteolytic activity. Several MMPs have been identified in the human brain, including gelatinase A (MMP2), gelatinase B (MMP9), stromelysin (MMP3), and collagenase (MMP1). Two additional bands with gelatinolytic activity and electrophoretic mobility corresponding to 130 and 250 kDa have been identified but not fully characterized. It hs been suggested that the 130-kDa band is a complex of gelatinase B and tissue inhibitor of metalloproteinase-1 (TIMP-1) or a dimer of the active 68.jDa form of gelatinase B. 

Increased concentrations of MMPs have been identified in the central nervous systems (CNS) of patients with Alzheimer´s disease, brain injury, and brain tumors. MMPs have also been detected in the CSF of patients with inflammatory diseases, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).
We recentrly reported the presence of 130-kDa gelatinolytic activity in the CSF of a patient with a documented Lyme neuroborreliosis. Here we analyze the pattern of MMPs in the CSF of patients with Lyme neuroborreliosis compared with healthy persons and patients with other* neurologic diseases. 

(Other *neurologic conditions were: 1) Alzheimers disease, 2) Parkinsons´s disease, 3) multiple sclerosis, 4) HIV encephalopathy, some with viral meningitis, bacterial or fungal encephalopathy; 5) metabolic encephalopathy, 6) lymphoproliferative disorders with sepsis or encephalopathy, 7) primary brain tumors, (8) metastatic tumors, 9) epidural haematoma, 10) subarachnoidal haematoma, 11) subdural haematoma, 12) transverse myelitis, 13) Guillan-Barre´´ syndrome.
...
From results:
Human CSF gelatinase A is secreted in a latent form (72 kDa) and is activated in vivo to a 64-kDa form by plasmin or other MMPs.
…

MMPs are expressed in virtually all tissues. 
Expression of MMPs is increased during physiological remodeling of tissues, such as mammary gland involution, postpartum uterine muscle contraction, and wound healing. Increased expression of MMPs also occurs in several pathologic conditions, including arthritis and malignant tumors.
In the CNS, increased MMP expression has been associated with multiple sclerosis, inflammatory neurologic disorders, amyotrophic lateral sclerosis, brain tumors, and Alzheimres disease. Gelatinases A and B are expressed in microglia and astrocytes. Collagenase (MMP1), matrilysin (MMP7), and stromelysin (MMP3) have been identified in gliomas.

The major finding of this study was that CHF of 78% of patients with Lyme neuroborreliosis contained a 130-kDa MMP without the 92-kDa gelatinase B. This pattern was relatively specific, occurring in only 6% of the CSF samples of 118 nonneurologic controls and patients with diverse neurologic disorders. This pattern was not observed in any of 11 patients with nonborrelial CNS infection. The expression of the 130 kDa-MMP without the 92-kDa gelatinase B may therefore be a useful laboratory marker for Lyme neuroborreliosis. 

In most but not all patients, there was a correlation between CSF pleocytosis and expression of gelatinase B, as noted previously, whereas gelatinase A was constitutively expressed in all of our patient groups. The CSF of persons without neurologic complaints contained only gelatinase A, as judged by electrophoretic mobuility and immunoblot analysis.

We characterized the gelatinolytic activity in the CSF of 100 patients with neurologic symptoms (38 neurologic controls and 62 with documented neurological diseases). Our observation that the CSF of patients with multiple sclerosis and no CSF pleocytosis contained only gelatinase A and no other gelatinases agrees with the finding of Gijbels et al. 
In that study, gelatinase B was found primarily in the CSF of those multiple sclerosis patients with CSF pleocytosis, suggesting that gelatinase B is produced by white blood cells. The presence of gelatinase B in the CSF of patients with brain tumors and no pleocytosis suggests that this MMP may also derive from neoplastic and glial cells. 
 
The CSF of some patients with presumed Alzheimer´s dementia contained only gelatinase A. This was surprising, since it was raported, and we have confirmed, that the brain parenchyma of patients with Alzheimers´s disease contain increased amounts of both gelatinase B and the 130-kDa MMP .

The mechanismi underlying the expression of the 130-kDa MMP in Lyme neuroborreliosis is unknown. Glial expression of some MMPs is regulated by cytokines, and concomitant expression of gelatinase B and interleukin-6 levels are elevated in the CSF with Lyme neuroborreliosis.
Moreover, co-incubation of C6 glioma cells with B. Burgdorferi induces the expression of IL-6. It is possibke that MMP and IL-6 expression are regulated by similar, as yet unknown, mechanism, We found that primary cultures of rat neural cells infected with B. Burgdorferi secrete increased amounts of MMPs compared with uninfected cultures. It remains to be seen which cell types mediate this response.

B.burgdorferi is not directly toxic to neurons and it is not known to express MMP activity; however, B. burgdorferi does bind to glial cells in vitro. Since MMPs can digest myelin hasic protein, B. burgdorferi could promote CNS injury indirectly by inducing the expression of MMPs in neural cells.

MMPs also digest  at least two proteins of adult  CNS extracellular matrix (ECM): the aggregating proteoglycan versican and tenascin.  The extracellular matrix (ECM) helps maintain the structural integrity of the CNS and facilitates cell migration, ion transport, and growth factor delivery. Thus, digestion of the brain extracellular matrix could promote the migration and disemination of B.- burgdorferi within CNS and could contribute to the neuropathology of Lyme neuroborreliosis. 

Muistiin  27.10.2017


Upplagd av Kirjallisuutta kl. 18:40 Inga kommentarer:
Skicka med e-postBlogThis!Dela på XDela på FacebookDela på Pinterest
Etiketter: MMP ja Lymen neuroborrelioosi

Punkin syljen merkitys veriravinnon hankinnassa

KUN PUNKKI PUREE SINUA, MUISTA SILLOIN MINUA! 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785505/

Front Biosci. Author manuscript; available in PMC 2010 Jan 1.
Published in final edited form as:
Front Biosci. 2009 Jan 1; 14: 2051–2088.
Published online 2009 Jan 1.
PMCID: PMC2785505
NIHMSID: NIHMS156530

THE ROLE OF SALIVA IN TICK FEEDING

Ivo M.B Francischetti,1 Anderson Sá-Nunes,1 Ben J. Mans,1 Isabel M. Santos,2 and José M.C. Ribeiro1
Author information ► Copyright and License information ►

Abstract

When attempting to feed on their hosts, 
 ticks face the problem of 
  • host hemostasis (the vertebrate mechanisms that prevent blood loss), 
  • inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts)
  •  and immunity (by way of both cellular and humoral responses). 
Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding.

 Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks).

(1)   This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function.

 (2)  We additionally provide a supplemental table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins.

 This supplemental file is accessble from http://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.

It is possible that the diversity of salivary proteins found in tick saliva reflects a fast evolutionary scenario driven by an arms race between the tick proteins and the adaptive immunity of their hosts.
  Gene duplications initially may confer an advantage by creating an increased tissue expression of the gene product.
 Later on, diversion of function, or acquisition of new functions may occur with the duplicated gene [414, 415].
 The fast diversification of the salivary protein families could be the result of acquisition of novel functions, as might be the case with the main lipocalins families, but they may also reflect maintenance of function with diversification in epitopes, as may be the case with the Ixodes family of anticomplement proteins [237, 240, 381],
 or in the more closely related lipocalins subfamilies in the same species [238]. These different genes may also be expressed at different stages or times after host attachment, thus helping evasion of these molecules by the host immune response.
Upplagd av Kirjallisuutta kl. 15:20 Inga kommentarer:
Skicka med e-postBlogThis!Dela på XDela på FacebookDela på Pinterest
Etiketter: Punkin syljen merkitys verirqavinnon hankinnassa

Punkkien syljen metalloproteinaasit ja muut proteiinit


Muista silloij minua, kun punkki puree sinua.  (Vanha suomalainen sanonta) 

 Punkin puremaa EI tunne eikä  sitä huomaa, koska punkkisylki  on  niin puuduttavaa ainetta, mutta purematunne kestää siten myhemmässä vaiheessa  kauan  ilkeänä kuin "skorpionin pisto" eikä puremapaikan tuntoaistimus katoa viikkoihin,  ehkä pitempikin aika kuluu ja  puremakohta tuntuu kutiavalta  ja pistävältä, vaikka siitä olisi poistanut silmillä nähtävän  punkkimateriaalin.

  (Punkin sylki ja puremajärjestelmä ovat tämän takia kiinostavia.
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785505/)

TÄSSÄ artikkelissa: Eroista pehmeiden ja kovien punkkien syljen välillä
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211429/
Insect Biochem Mol Biol. 2008 Jan; 38(1): 42–58.
Published online 2007 Sep 25. doi:  10.1016/j.ibmb.2007.09.003
PMCID: PMC2211429 NIHMSID: NIHMS37009

Comparative sialomics between hard and soft ticks: Implications for the evolution of blood-feeding behavior

Ben J. Mans,a John F. Andersen,a Ivo M.B. Francischetti,a Jesus G. Valenzuela,a Tom G. Schwan,b Van M. Pham,a Mark K. Garfield,c Carl H. Hammer,c and José M.C. Ribeiroa,*
Author information ► Copyright and License information ►

Abstract

Ticks evolved various mechanisms to modulate their host’s hemostatic and immune defenses. Differences in the anti-hemostatic repertoires suggest that hard and soft ticks evolved anti-hemostatic mechanisms independently, but raise questions on the conservation of salivary gland proteins in the ancestral tick lineage. 
 To address this issue the sialome (salivary gland secretory proteome) from the soft tick, Argas monolakensis was determined by proteomic analysis and cDNA library construction of salivary glands from fed and unfed adult female ticks.
 The sialome is composed of ~130 secretory proteins, of which the most abundant protein folds are the lipocalin, BTSP, BPTI and metalloprotease  (MMPs)  families which also comprise the most abundant proteins found in the salivary glands.
 Comparative analysis indicates that the major protein families are conserved in hard and soft ticks.
 Phylogenetic analysis shows, however, that most gene duplications are lineage specific, indicating that the protein families analyzed possibly evolved most of their functions after divergence of the two major tick families.
In conclusion, the ancestral tick may have possessed a simple (few members for each family), but diverse (many different protein families) salivary gland protein domain repertoire.
Keywords: Argas, blood-feeding, evolution, proteome, sialome
Go to:

1. Introduction

Blood-feeding behavior evolved independently in insects in flies (Diptera), true bugs (Hemiptera), lice (Phthiraptera), fleas (Siphonaptera) and moths (Lepidoptera) (Ribeiro, 1995). In arachnids, hematophagous behavior evolved independently in ticks (Ixodida) and mesostigmatid mites (Mans and Neitz, 2004a; Radovsky, 1969). In each case the blood-feeding arthropod had to evolve mechanisms to modulate host defenses such as the hemostatic and immune systems. The mechanisms evolved by hematophagous arthropods mostly involve the secretion of salivary gland derived proteins during feeding and it is these proteins that target important host processes (Ribeiro, 1995). Adaptation to a blood-feeding environment by arthropods can thus be redefined as a study of the structural and functional evolution of the sialome (salivary gland proteomes of hematophagous organisms). From this perspective, the fact of independent adaptation to blood-feeding is clear when sialomes from different species are compared (Valenzuela et al., 2002a; Ribeiro and Francischetti, 2003; Champagne, 2004). In most cases the mechanisms to counteract the host’s immune and hemostatic defenses differ between various groups of hematophagous organisms.

 For the two major tick families, the soft (Argasidae) and hard (Ixodidae) ticks, this also holds and suggested that soft and hard ticks adapted to a blood-feeding environment independently (Mans et al., 2002a; Mans and Neitz, 2004a). Even so, phylogenetic analysis shows that the hard and soft tick families group as a monophyletic clade, indicating that they shared a common ancestor to the exclusion of other mites (Black and Piesman, 1994; Barker and Murrell, 2004). It was, however, also indicated that the ancestral tick lineage must have had some form of host-association, such as feeding on lymphatic fluid of the living host or as scavengers (Mans and Neitz, 2004a). This implies that the ancestral tick lineage must have features conserved in both families.

While the anti-hemostatic factors of soft and hard ticks differ in their mechanisms of action and protein families that they belong to, the two tick families share common protein folds in their salivary glands, such as the basic pancreatic trypsin inhibitor (BPTI) and lipocalin protein families (Mans and Neitz, 2004a).
 The BPTI/Kunitz family is composed of proteins that exhibit the basic pancreatic trypsin inhibitor fold (Laskowski and Kato, 1980).
 BPTI-like proteins act as thrombin, fXa and platelet aggregation inhibitors in soft ticks (Waxman et al., 1990; Karczewski et al., 1994; Van de Locht et al., 1998; Joubert et al., 1998; Mans et al., 2002b; Mans et al., 2007). 
In hard ticks, BPTI-like proteins inhibit the fVIIa/TF complex (Francischetti et al., 2002; Francischetti et al., 2004).

 The other major protein family so far described for ticks is the lipocalin family. In soft ticks, lipocalins function as anti-complement factors (Nunn et al., 2005), inhibitors of platelet aggregation (Waxman and Connolly 1993; Keller et al., 1993) and toxins (Mans et al., 2002c) and have been shown to be abundantly expressed in salivary glands (Mans et al., 2001; Mans et al., 2003; Oleaga et al., 2007). 
In hard ticks lipocalins that scavenge histamine and serotonin have also been described (Paesen et al., 1999; Paesen et al., 2000; Sangamnatdej et al., 2002).

 Recently high throughput sequencing of salivary gland transcripts from Ixodes scapularis and I. pacificus has shown that hard ticks possess more than 25 protein families in their sialomes (Valenzuela et al., 2002b; Francischetti et al., 2005; Ribeiro et al., 2006).
The question raised is how many of these protein families are also represented in soft ticks? 
Data on this could indicate the number of conserved protein families found in the salivary glands of the ancestral tick lineage and whether any specific orthologs existed between hard and soft ticks before their divergence.

To address this, the salivary gland transcriptome and proteome of the soft tick Argas monolakensis were characterized. A. monolakensis is limited to islands located on Mono Lake, California where it feeds annually on the breeding Californian gull population (Larus californicus) (Schwan et al., 1992). It is problematic for ornithologists working on the islands and is a potential vector of Mono Lake virus (Rheoviridae: Orbivirus) (Schwan and Winkler, 1984; Schwan et al., 1988). 

We show that the major protein families are conserved between hard and soft ticks. Even so, the numerous gene duplication events observed within individual protein families appear to be limited to lineage specific expansions, indicating that most of the sialome diversity observed for the different tick families evolved after their divergence.

3.9. The 8kDa cysteine-rich family is shared between hard and soft ticks

In some cases no positive hits were found between soft and hard ticks, for example, the 8kDa cysteine-rich family. However, small proteins might be divergent to an extent that even PSI-BLAST analysis might not detect homologies. In these cases, conserved features such as cysteine and disulphide bond patterns can be used to show that proteins possess the same fold. This study found at least 5 proteins that all share the same cysteine bond pattern but do not retrieve other proteins, i.e. the 8kDa cysteine-rich family. When compared to a group previously identified in Ixodes ticks (the ixodegrins), they clearly share the same cysteine pattern (Fig. 5). Some ixodegrins possess the RGD integrin recognition motif that correlates with that found for the snake derived disintegrin, dendroaspin and the hard tick platelet aggregation inhibitor variabilin (Francischetti et al., 2005). The Argas proteins, however, lack the RGD-motif. 
Proteins with the RGD-motif have been identified in the salivary glands of A. monolakensis and are orthologous to platelet aggregation inhibitors from the BPTI-like family found in the soft tick genus Ornithodoros (Mans et al., 2007).
  • DENDROASPIN: https://www.ncbi.nlm.nih.gov/pubmed/7634091
  • VARIABILIN:   http://www.jbc.org/content/271/30/17785

4. Discussion

The field of vector-host interaction has gained tremendously by high-throughput analysis of salivary gland transcripts and proteomes, collectively called the sialome (Ribeiro and Francischetti, 2003). This approach allows for the description of secretory products involved in blood-feeding of hematophagous organisms. Heretofore, the identification of proteins active at the blood-feeding site was only accessible using biochemical purification techniques to isolate bio-active components from salivary glands or saliva. The present advances in high-throughput methodologies allows us to gain a glimpse of the sialome in its full complexity. Thus, while biochemistry will always be needed to confirm and validate functional predictions derived from sialomic databases, the analysis of sialomes in terms of their protein domain compositions allows for a comparative analysis of sialome complexity and diversity that gives us insights into the evolution of blood-feeding behavior in arthropods. In the present study we analyzed the sialome of a soft tick species (A. monolakensis) and compare it with hard tick sialomes previously described. We derive the general conclusion that hard and soft ticks shared a similar salivary gland protein repertoire in their last common ancestor.
Approximately 130 potential secretory transcripts were identified in the salivary gland transcriptome of A. monolakensis by cDNA library construction. This compares well with the proteomic analysis using 2D-electrophoresis and liquid chromatography that resolved 78 and 118 abundant proteins, respectively. It also indicates that this number is probably close to the real number of secretory components found in the salivary glands of this soft tick.
 In comparison, more than 500 proteins have been described for the salivary glands of I. scapularis (Ribeiro et al., 2006). In this latter study, the data were obtained from the analysis of ~8000 ESTs, while the current study only analyzed ~3000 ESTs. However, these estimates likely correlate with salivary gland complexity, with hard tick salivary glands being more complex than that of soft ticks, as evidenced by that higher number of secretory acini and cell types found in hard ticks (Coons and Alberti, 1999). 
 Presumably, this is because hard ticks would need more components to control the host’s defense mechanisms and because they feed for longer periods of time and is exposed to the host’s immune system for extended periods of time.
The transcript numbers for highly abundant contigs also correlate well with the highly abundant proteins identified during the proteomic analysis. This correlation is consistent with the emerging paradigm in vector salivary gland biology, that proteins secreted during feeding are generally the most abundant salivary gland proteins with the correlated highest numbers of mRNA salivary gland transcripts. Even so, it is of interest that soft tick glands show such a good correlation between transcript and protein abundance. Soft tick salivary glands are normally filled with large secretory granules where proteins are stored until secretion during feeding (Roshdy, 1972, Roshdy and Coons, 1975, Coons and Roshdy, 1981, El Shoura, 1985; El Shoura 1987, Mans et al., 2004). Ticks, such as A. monolakensis, may only feed once a year and in the periods in between, granules will be stationary. Salivary glands can presumably only accommodate a certain number of granules and as such, proteins can be stored over prolonged periods of time and will accumulate, so that a general correlation between protein concentration and transcript number would not necessarily follow. Comparison of the cDNA libraries obtained for fed and unfed ticks do not differ markedly in terms of transcript numbers for various contigs (supplementary material). This would indicate that transcription occurs at the same rate for secretory transcripts regardless of the feeding status of the tick. Thus, if there is regulation of protein levels or salivary granule number, it would occur at a post-transcriptional level.
Analysis of the protein families identified in the Argas sialome indicate that they share to a large extent a similar salivary gland proteome with hard ticks. This would imply that most of the shared protein domains were also present in the ancestral tick lineage to the two families. Even so, few clear-cut orthologs were identified for highly abundant protein folds found in the soft and hard tick families. This observation could be extended to the lesser abundant protein families (results not shown). In the case of very short sequences (BPTI-kunitz and defensin families), sequences may evolve fast so that phylogenetic information is lost (Mans et al., 2002a). Host immune pressure and divergence times extending back to 400 MYA may also account for the high divergence of sequence (Barker and Murrell, 2004). Numerous biochemical studies have also shown that specific functions involved in the regulation of the host’s immune and hemostatic systems are not conserved between hard and soft ticks (Mans and Neitz, 2004a; Mans et al., 2007). The possibility thus exists that once functions are found for many of the divergent proteins in the sialomes; they will differ between the tick families. Those protein families for which orthologous proteins exist, are most probably ones conserved throughout invertebrates and would include the metalloproteases and anti-microbials. In short, these proteins would have had generalized functions before adaptation to a blood-feeding environment.
The predicted presence of certain shared protein folds in the ancestral tick lineage from which salivary gland function evolved raises the question as to where these folds derived from. For most of the major salivary gland protein families, they clearly derived from much more ancient members of the same folds that are present in arthropods. 
The ancestor to the salivary BPTI proteins probably derived from a hemolymph BPTI-like protein, such as those common in the hemolymph of arthropods (Mans and Neitz, 2004a). These proteins would generally be involved in the regulation of serine proteases involved in various processes and their presence in the salivary glands might have assisted in the inhibition of hemolymph proteases at a stage when the ancestral tick lineage still scavenged dead arthropods. 
Lipocalins most probably derived from a Lazarillo-like ancestor that was involved in the development of the neural system (Mans and Neitz, 2004b).  
  • LIPOCALINS  https://en.wikipedia.org/wiki/Lipocalin
The metalloproteases are ancient enzymes that are conserved throughout the animal kingdom and are involved in all processes of extra-cellular matrix remodeling, a role it most probably also plays in arachnids. In the ancestral tick lineage these proteases must have played a role in digestion and liquefaction of a scavenged meal. It would seem a simple jump to re-adapt and retain them for blood-feeding use, especially when previous targets were collagen or fibrinogen-like. The presence of other “house-keeping, but adaptive” domains are also noted, for example the anti-microbials that would have a more ancient protective role, but would be co-opted for blood-feeding. Certain folds seem to be novel to tick salivary glands, most notably the BTSP-fold because of the high number of members found in both hard and soft tick salivary glands.
 The thrombospondin-repeat occurs in a number of mammalian proteins (Tucker, 2004). Thus far the only proteins outside of the BTSP family with TSP repeat that has been found in tick salivary glands are the ADAM-TS metalloproteases. This suggests that the BTSP fold and all its derivatives, i.e. 7DBF, 18kDa, 2CF, were most probably derived from a gene duplication of this domain from an existing metalloprotease. Whether this occurred more than once is difficult to ascertain, but would not be impossible, as the disulphide patterns from the 18.7kDa and 7DBF families are different and probably derived from existing TSP-1 families. Those domains which are currently orphan domains, i.e. proteins that cannot be assigned to any known protein family or domain, are most probably highly divergent members of known domains. It is foreseen that as more data become available, most of these orphan domains will eventually be assigned to well known families and that their origins will be easier to trace.
Certain recurring trends appear for many proteins found in tick salivary glands. They either belong to large families of which most genes seem to be lineage specific expansions, or their origins can be traced back to proteins that were already present in the salivary glands of the ancestral tick lineage. From this viewpoint, we propose that the ancestral tick lineage had a restricted set of salivary gland derived protein families which was not necessarily adapted to function within a blood-feeding environment. Subsequently the main tick families diverged and adapted to a blood-feeding environment. During this period, novel proteins involved in the modulation of the host’s hemostatic and immune systems evolved by gene duplication of full-length domains, as well as sub-domains. Proteins with functions that could affect the host’s defenses were also recruited during this period.
Upplagd av Kirjallisuutta kl. 14:00 Inga kommentarer:
Skicka med e-postBlogThis!Dela på XDela på FacebookDela på Pinterest
Etiketter: Punkkien syljen metalloproteinaasit
Senare inlägg Äldre inlägg Startsida
Prenumerera på: Inlägg (Atom)

Leta i den här bloggen

Sidor

  • Startsida

Bloggintresserade

Bloggarkiv

  • ►  2023 (10)
    • ►  juli (3)
    • ►  maj (5)
    • ►  mars (2)
  • ►  2021 (4)
    • ►  november (1)
    • ►  oktober (2)
    • ►  februari (1)
  • ►  2020 (14)
    • ►  april (1)
    • ►  februari (1)
    • ►  januari (12)
  • ►  2019 (19)
    • ►  juni (1)
    • ►  maj (1)
    • ►  mars (7)
    • ►  februari (10)
  • ►  2018 (62)
    • ►  november (10)
    • ►  oktober (5)
    • ►  september (3)
    • ►  augusti (1)
    • ►  juli (1)
    • ►  juni (1)
    • ►  maj (1)
    • ►  april (1)
    • ►  mars (16)
    • ►  februari (1)
    • ►  januari (22)
  • ▼  2017 (5)
    • ▼  oktober (5)
      • Suomalaisia artikkeleita matrixmetalloproteinaasei...
      • Lymen neuroborrelioosi ja liquorin MMP-kirjo
      • Matrixmetalloproteinaasit aivoselkäydinnesteessa ...
      • Punkin syljen merkitys veriravinnon hankinnassa
      • Punkkien syljen metalloproteinaasit ja muut prote...
  • ►  2016 (21)
    • ►  december (1)
    • ►  november (14)
    • ►  juli (2)
    • ►  mars (4)
  • ►  2015 (16)
    • ►  september (3)
    • ►  maj (8)
    • ►  april (2)
    • ►  mars (3)
  • ►  2014 (62)
    • ►  november (8)
    • ►  oktober (12)
    • ►  september (13)
    • ►  juli (2)
    • ►  april (20)
    • ►  mars (7)
  • ►  2013 (5)
    • ►  december (5)
  • ►  2012 (31)
    • ►  december (28)
    • ►  november (1)
    • ►  maj (1)
    • ►  januari (1)
  • ►  2011 (13)
    • ►  december (1)
    • ►  september (5)
    • ►  maj (5)
    • ►  mars (1)
    • ►  januari (1)
  • ►  2010 (20)
    • ►  december (2)
    • ►  oktober (4)
    • ►  augusti (2)
    • ►  juli (12)

Om mig

Kirjallisuutta
1946 syntynyt Tampereella Ylioppilastutkinto 1964 Lempäälä Lääketietaan kandidaatti 1966 Turun yliopisto Lääketieteen lisensiaatti 1972 Turun Yliopisto Dietetiikan opiskelu 1998 - 2001 Göteborgin Yliopisto Eläkkeelle 2010
Visa hela min profil

Leta i den här bloggen

Temat Enkel. Temabilder från luoman. Använder Blogger.